GEOTECHNICAL AND STRUCTURAL STUDIES ON SOME NEW CITIES AROUND CAIRO

THESIS SUBMITTED BY ADHAM REFAIE HASSAN OSMAN

(B.Sc. & M.Sc.)

Cairo University

FOR
THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN
GEOLOGY

GEOLOGY DEPARTMENT, FACULTY OF SCIENCE CAIRO UNIVERSITY

EGYPT

APPROVAL SHEET

FOR SUBMISSION OF PH.D. THESIS

Title: GEOTECHNICAL AND STRUCTURAL STUDIES ON SOME NEW CITIES AROUND CAIRO

By

Adham Refaie Hassan Osman (M.Sc. in Geology)

Submitted to: Faculty of Science, Cairo University, Egypt.

Supervisors:

- 1- Prof. Dr./ Laila Abdel Meguid Fayed
- 2- Ass. Prof./ Mohammed Abdel Wahed

Prof. Dr./ Adel Abdel Aziz Sehim

Head of Geology Department

Faculty of Science, Cairo University.

بسم الله الرحمن الرحيم

دراسات جيوتقنية وتركيبية لبعض المدن الجديدة حول القاهرة

رسالة مقدمة إلى قسم الجيولوجيا- كلية العلوم جامعة القاهرة

للحصول على درجة الدكتوراة - فلسفة العلوم في الجيولوجيا

اعداد

ادهم رفاعی حسن عثمان (ماجستیر جیولوجیا۔ جامعة القاهرة)

كلية العلوم - جامعة القاهرة

ABSTRACT

15th of May and the Qattamiya cities are located to the southeast and east of Cairo city, respectively. Both cities are built on bedrock consisting of limestones intercalated with marls and clays of Middle and Upper Eocene age. These cities are facing serious problems in the building and constructions due to the lack of geological, structural and geotechnical studies on their foundation bedrocks. Accordingly, the Scope of this thesis deals with the geological, structural, geotechnical studies on the foundation bedrocks in the sites of both cities and their environs, which are delimited between latitudes 29° 46° and 30° 02° N and longitudes 31° 16° and 31° 30° E, to throw the light on these problems and hazards affecting them.

Stratigraphically, the exposed rocks in the area are of Middle, Upper Eocene, Oligocene, Pliocene and Quaternary ages. They could be distinguished into nine rock units, Gabal Hof Formation (Middle Eocene), Observatory Formation (Middle Eocene), El Qurn Formation (Upper Eocene), Wadi Garawi Formation (Upper Eocene), Wadi Hof Formation (Upper Eocene), Anqabiya Formation (Upper Eocene), Gabal Ahmar Formation (Oligocene), Pliocene Deposits and Wadi Deposits (Quaternary).

Geomorphologicaly, the area under consideration is characterized by the presence of conspicuous land forms. Its topography and geology are intimately related, where the lithology and stratigraphic position of the different beds greatly influence the type of weathering and contribute much to the general shape of the landscape.

Topographically, the area has two plateaus separated by a topographically low area. Gabal Mokattam forms the northern plateau while the southern plateau is marked by a relatively high escarpment on its northern side called here the Tura –Hof -Observatory plateau. The latter is dissected by several deeply incised wadies such as Wadi Degla, Wadi Hof, and Wadi Gibbu. Some topographic lows exist within this plateau representing grabens. Also some topographic heights can be recognized on top of this plateau; e.g. El Qurn Height, El Halawana Height, the Ochsen Ridge, G. Hamadel, etc... Some of the highs and the plateau escarpments are also structurally controlled.

Detailed geological and structural maps has been constructed to show the effect of the faults on the site of the cities. Structural analysis defined several major trends of faults and fractures affecting the study area. The main fault sets have NW-SE and E-W trends. The formeris the most dominant and gives rise to a sequence of horsts and grabens.

The GPR studies have been applied on 26 chosen locations within the sites of the cities. Sixteen sites within the 15th of May city in addition to 10 profiles collected from the Qattamiya city. These sites were chosen to represent the different districts of the cities as possible and to cover sectors of special interest where subsurface structures or some problems are expected. The main subsurface features recorded are the presence of vertical and inclined fractures, a considerable number of caves at several locations and at different depths. Also, sewage water is encountered in the subsurface of some locations of the Qattamiya city site.

The geotechnical studies on 74 limestone rock samples collected from 15th of May city revealed that the foundation bedrocks forming the site of the city are

physically and mechanically heterogeneous (anisotropic) and fall within the weak to medium strong range of the limestones, while their mode of failure is almost of brittle type developing extension, wedge type and single shear fractures. The mechanical properties are controlled by their physical properties, as well as their composition. Statistical relations between the physical and mechanical properties are studied and expressed by empirical equations.

Laboratory tests were performed in accordance on 42 samples collected from the Qattamiya city and its extensions. Analysis of physical properties of the studied Qattamiya soil samples indicates that they have high to very high swelling potentiality. The engineering classification of the studied soil samples is inorganic clay of high to extremely high plasticity.

Based on the detailed structural and geotechnical studies on the area under consideration, some environmental and geologic hazards are encountered and can be grouped as: geotechnical hazards, structural hazards, dissolution hazards, quarry blasting hazards, subsidence hazards, seismicity hazards and air pollution hazards.

These hazards are intimately related and mutually affect each other.

Such hazards may also be taken into consideration in the future extension of the cities where necessary.

ACKNOLEDGEMENT

The author wishes to thank Prof. Dr. Laila A. Fayed, Faculty of Science, Cairo University, for her guidance, supervision, critical readings of the manuscript and her critical comments.

The author also would like to express his deep gratitude to Associate Prof. Mohamed A. Wahed, Faculty of Science, Cairo University for supervising this work, his advises, continuous efforts during field studies and revision of the manuscript, and his continuous encouragement.

Deep thanks to Dr. Nahla Shallaly, Geology Department, Faculty of Science, Cairo University for her help in the interpretation of the Clay minerals

Deep thanks to Mr., Tamer Hassan, Mr., Amir Mohamed Hassan, and Moataz El Shafey, Faculty of Science, Cairo University, for their assistance in the field work.

Finally, I would like to express my deep thanks to all who helped me directly or indirectly to carry out this work.

CONTENTS

ACKNOWLEDGEMENT I
ABSTRACT II
LIST OF CONTENTS V
LIST OF FIGURES IX
LIST OF TABLESX
CHAPTER ONE: INTRODUCTION
1.1. Aim of the study
1.3. The Stratigraphy of the Eocene Rocks
1.4. Previous work on the stratigraphy of the Eocene rocks east and southeast of Cairo
1.5. Previous work of the geotechnical studies on the Eocene Rocks
1.6. Previous work of Structural studies on the Eocene Rocks
CHAPTER TWO: GEOLOGIC SETTING
2.1. Middle Eocene: 26 2.1.1. Gabal Hof Formation 26
2.1.2. Observatory Formation
2.2. Upper Eocene
2.2.1. El Qurn Formation. 29
2.2.2. Wadi Garawi Formation
2.2.3. Wadi Hof Formation
2.2.4. Anqabiya Formation
2.3. Oligocene
2.3.1. Gabal Ahmar Formation
2.4. Pliocene
2.5. Quaternary Deposits
2.6. Geomorphology of the area east and south east of Cairo
2.6.1. Topographic features392.6.1.1. Heights39
2.6.2. Main drainage lines in 15 th of May city and its environs
2.6.3. Main Drainage lines in Qattamiya city area and its environs
CHAPTER THREE: STRUCTURAL SETTING 50
3.1. Faults
3.1.1. The NW-SE fault set
3.1.2. WNW - ESE fault set
3.1.3. The E-W fault set
3.1.4. The ENE-WSW Fault set
3.1.5. Faults cutting across 15 th of May city

3.1.6. Faults cutting across El Qattamiya city	72
3.2. Joints	77
3.2.1 Fracture analysis of 15 th of May city	79
3.2.2. Fracture analysis of Qattamiya city	102
CHAPTER FOUR: GEOTECHNICAL PROPERTIES OF 15 th OF	
MAY CITY	115
4.1. Introduction.	
4.2. Uniaxial deformation	
4.2.1. Failure, fracture and strength	
4.3. Failure Criteria	
4.4. Physical properties	
4.4.1. Bulk density	
4.4.2. Apparent porosity	
4.5. Mechanical properties	
4.5.1.1. Classification schemes	
4.5.2. Brazilian test.	
4.5.3. Schmidt Hammer Rebound number	
4.5.4. Double shear test.	
4.6. Sample preparation	
4.7. Results and Statistical analyses	
4.7.1. Results of physical properties	
4.7.1.1. Porosity	
4.7.1.2. Density	
4.7.2. Results of the mechanical properties	
4.7.2.1. Compressive strength	
4.7.2.2. Tensile strength	
4.7.2.3. Shear strength	
4.7.2.4. Young's modulus.	
4.7.2.5. Schmidt hammer test	
	181
	185
rebound index	
4.9. Mutual relations between tensile strength, porosity and density	191
4.10. Mutual relations between shear strength, porosity, and density	194
4.11. Mutual relation between young's modulus, porosity, and density	197
4.12. Mutual relation between rebound index, porosity and density	
CHAPTER FIVE: GEOTECHNICAL PROPERTIES OF	
QATTAMIYA CITY	202
5.1. Introduction	
5.2. Physical Properties	
5.2.1. Initial moisture content.	
5.2.2. Bulk Density	

5.3. Consistency of soil	
5.3.1. Liquid Limit (LL)	217
5.3.2. Plastic Limit (PL)	220
5.3.3. Shrinkage Limit (S.L)	224
5.4. Consistency indices	225
5.4.1. Plasticity Index	227
5.4.2. Liquidity index (LI)	227
5.4.3. Consistency index (CI)	231
5.5. Engineering classification of fine soil	232
5.5.1. Plasticity Chart	233
5.6. Free Swelling Test	233
5.7. Clay Mineralogy	234
5.8. Colloid content	234
5.9. Activity (A _c)	237
5.10. Mutual relation between Initial moisture content, the Bulk density, free	238
· · · · · · · · · · · · · · · · · · ·	230
swelling and atterberg limits (L.L, P.L, and S.L)	239
5.10.1. Mutual relation between Initial moisture content and the Bulk Density	239
5.10.2. Mutual relation between Initial moisture content and the Liquid Limit (L.L)	240
5.10.3. Mutual relation between Initial moisture content and the Plastic Limit (P.L)	240
5.10.4. Mutual relation between Initial moisture content and the Shrinkage Limit (S.L)	
5.10.5. Mutual relation between Initial moisture content and the Free Swelling	243
5.10.6. Mutual relation between Bulk Density and Liquid Limit	2 4 2
5.10.7. Mutual relation between Bulk Density and Plastic Limit	
5.10.8. Mutual relation between Bulk Density and Free swelling	
5.10.9. Mutual relation between Liquid limit and Free swelling	
5.10.10. Mutual relation between Plastic limit and Free swelling	
5.10.11. Mutual relation between Liquid and Plastic limit	
5.11. Mitigation of expansive clay soil	246
5.12. Minimizing Expansion Effects	250
	251
CHAPTER SIX: SUBSURFACE INVESTIGATION USING	
GROUND PENETRATING RADAR (GPR)	255
6.1. Introduction.	233
6.2. Data collection	
6.3. Theoretical background and causes of subsurface GPR reflections	
6.4. Inherent limitations of unprocessed GPR data	
6.4.1. Time-zero drift.	
6.4.2. Common-offset data collection.	
6.4.3. Signal saturation.	
6.4.4. Depth of penetration.	
6.4.4.1. Limiting Factors in GPR Analysis.	
6.4.5. Horizontal and vertical resolution.	
6.4.6. Ambient and systematic electromagnetic noise	
6.4.7. Surface reflections	
6.5. Data processing.	
6.5.1. Time-zero-drift correction.	285

6.5.2. Signal-saturation correction.	
6.5.3. Application of gains and filters	
6.6. Characteristics of GPR used (The Equipment)	
6.7. GPR STUDIES ON THE SITES OF THE CITIES	
6.7.1. GPR profiles in 15 th of May city	291
6.7.2. GPR profiles in Qattamiya city	294
	320
CHAPTER SEVEN: GEOLOGICAL AND ENVIRONMENTAL	
HAZARDS	
7.1. Geotechnical Hazards	340
7.2. Structural Hazards	340
7.3. Dissolution effects Hazards	347
7.4. Quarry Blasting Hazards	351
7.5. Subsidence Hazards	357
7.6. Seismicity hazards	
7.7. Pollution Hazards	364
	371
CHAPTER VIII: SUMMERY AND CONCLUSION	
REFERENCES	374
ARABIC SUMMERY.	393
ANADIC SUMMENT.	

LIST OF TABLES

Table (1.1): Middle and Upper Eocene classifications in Egypt	
Table (3.1): Geometry of joint planes measured in the 15 th of May city	80
Table (3.2): Geometry of joint planes measured in the Qattamiya city	103
Table (3.3): Summary of the major joint trends affecting 15 th of May city	113
Table (3.4): Summary of the main joint trends affecting the Qattamiya city	114
Table (4.1): Values of the constant m _i for intact rock, by rock group	135
Table (4.2): Engineering classification for intact rocks	139
Table (4.3): Rock classification for use in Rock Mechanics	140
Table (4.4): Classification of rock materials based on unconfined compressive	
strength	140
Table(4.5): Results of the physical and mechanical properties of the tested	
samples of 15 th of May city	149
Table (4.6): Summary of the statistical analysis of both physical and mechanical	
properties of 15 th of May city	151
Table (5.1): Classification of visible damage to walls	207
Table (5.2): Results of the Initial moisture content, Bulk density and Atterberg	
limits of the Qattamiya soil samples	215
Table (5.3.): Summary of the statistical analysis of the physical properties of	
the Qattamiya soil samples	
Table(5.4): Plasticity according to Liquid Limits	222
Table (5.5): Expansive soil classification based on Liquid Limits	224
	230
Table (5.7): Plasticity index as a criterion for predicting swelling potential soils.	231
Table (5.8): Classification of soil state based on its liquidity index	231
Table (5.9): Consistency of cohesive soils	232
Table (5.10): Results of free swelling, clay content and activity of some soil	
samples of the Qattamiya city	238
Table (5.11): Activity of the common clay minerals	239
Table (6.1): Examples of the electrical properties of some common geologic	
materials at 50-120MHz	269
Table (6.2): Reflection coefficient modeling for the typical change in sediment	
water content, porosity, lithology, grain shape and grain orientation	270
Table (6.3): Depth of penetration of GPR waves produced in different types of	
rocks using antennae of various frequencies	274
Table (6.4): GPR measurements parameters	290
Table (6.5): Coordinates of the GPR profiles conducted on the 15 th of May and	
Qattamiya cities	293
Table (7.1): The parameters of the 12 th October, 1992 earthquake and	
	370
Table (8.1): Rock classification and constituent lithologies in the study area	376

LIST OF FIGURES

Fig.(1.1): Distribution of the new cities around Cairo	2
Fig. (1.2): Location map of the study area	4
Fig. (1.3): Distribution of the Eocene rocks in Egypt	6
Fig. (2.1): Geological map of the east and southeast of Cairo	25
Fig. (2.2): Well bedded limestone and chalky limestone of Observatory Formation	29
Fig. (2.3): Thick marly limestone beds with thick gypsum veins of El Qurn Formation	30
Fig. (2.4A): Chalky limestone, marl and shale of Upper Eocene Wadi Garawi Formation	32
Fig. (2.4B): Sands, Marl and marly limestone of Wadi Hof Formation, Qattamiya area	32
Fig. (2.5): Cross bedded sandstone of Oligocene Gabal Ahmar Formation, Qattamiya area	35
Fig. (2.6): Calcareous sands of Pliocene Deposits, 15 th of May City	36
Fig. (2.7): Photographs showing the Quaternary deposits at the northwestern southern	
parts of 15 th of May City	38
Fig.(2.8): Landsat image showing the main geomorphic units at the east and southeast of	
Cairo	39
Fig.(2.9): Natural colour high resolution landsat image showing Ochson Ridge and Gabal	5)
Hammadel, east of 15 th of May City	41
Fig.(2.10): High resolution landsat image showing Observatory plateau	41
Fig.(2.11): High resolution landsat image showing El Qurn Height, east of 15 th of May City	42
Fig.(2.12): High resolution landsat image showing El Halawana Height	42
Fig.(2.13): High resolution landsat image showing Wadi Hof and its tributaries	44
Fig.(2.14): Photograph showing Wadi Abu Silli	44
Fig.(2.15A): High resolution landsat image showing Wadi Gibbu and its tributaries	46
Fig.(2.115B): Photograph showing the downstream of Wadi Gibbu, southeast of 15 th of May	70
City	46
Fig.(2.16): High resolution landsat image showing Wadi Garawi and its tributaries	48
Fig.(2.17): High resolution landsat image showing Wadi Degla and Wadi El Tih, Qattamiya	
area	48
Fig. (3.1): Structural map of the Qattamiya and 15 th of May cities and their environs	51
Fig. (3.2): Landsat image showing the main structural elements affecting the study area and	<i>J</i> 1
its environs	52
Fig. (3.3): Photographs showing the horizontal and inclined bed in the Eocene and Pliocene	J_
Deposits in 15 th of May City	54
Fig. (3.4): Photographs showing the gradded and cross bedding of Oligocene and Pliocene	٠.
deposits in the study area	55
Fig. (3.5): Photographs showing the slickensides along normal faults	57
Fig. (3.6): Photographs showing synthetic and antithetic faults, Qattamiya area	58
Fig. (3.7): Photographs showing rotated block formed in relation to normal faults	59
Fig. (3.8): Photograph showing fault breccia along normal faults	59
Fig. (3.9): Photograph showing shale smearing along normal faults	61
Fig. (3.10): Rose diagram representing the trends frequency of the major faults encountered	O1
in the study area	62
Fig. (3.11): Photograph showing vertical fault plane of F33 fault	68
Fig. (3.12): Photograph showing the Wadi El Tih E-W fault, Qattamiya area	68
Fig. (3.13): Photographs showing the tilting of Upper Eocene rocks along the El Tih E-W	Uð
Fault	69
Fig. (3.14): Photograph showing the dragging of incompetent clay beds along normal fault	UJ
associated to the master F49 fault	70
associated to the master 1 47 rault	70

Fig. (3.15): Photograph showing the N78W fault (F70) between the Upper Eocene and the	
Pliocene deposits, southwest of 15 th of May city	. 73
Fig. (3.16): Photograph showing the N50W fault (F4) at the western parts of 15 th of May	
City	73
Fig. (3.17): Photograph showing the N52W fault (F5) in the Upper Eocene rocks, eastern	
parts of 15 th of May City	. 74
Fig. (3.18): Photograph showing the N73W fault (F71) between the Upper Eocene and the	
Oligocene deposits, Qattamiya area	. 74
Fig. (3.19): Photographs showing the normal N50W fault (F39) between the Upper Eocene	
and the Oligocene deposits, Qattamiya area	
Fig. (3.20): location map showing the location of joint stations on the two cities	78
Fig. (3.21A): Photograph showing the moderately open joint spacing along N70W	
Fractures	
Fig. (3.21B): Photograph showing the rough planar surface along N70W fractures	
Fig. (3.21C): Photograph showing the discontinuity aperture reach to 40mm	86
Fig. (3.21D): Photograph showing the dissolution features along the fractures in El Qurn	
Formation, 15 th of May City	86
Fig.(3-22):N70W fractures with vertical attitudes and moderately open joint spacing, station	
(4), Sector 13	. 89
Fig. (3-23): N60W fractures in El Qurn Formation, Note the gypsum filling fractures, Station	
(5), Sector 18	89
Fig.(3-24): NW steeply dipping fractures with iron staining walls, note the moderately open	
spacing., Station (6), Sector 19	91
Fig. (3-25): N40W fractures in marly limestone of El Qurn Formation, with joint spacing	
between 30-40cm, and gypsum filling fractures. Station 7, Centre of the city	91
Fig. (3-26A): vertical N60W fractures with rough planner surface, El Qurn Formation,	
Station 5	93
Fig. (3-26 B): moderately open to open space fractures along the N60W fractures, El Qurn	
Formation	. 93
Fig. (3-26C) plumose structure on the N20E vertical fractures, Station (10), Sector 26	. 93
Fig.(3-27): NW fractures in El Qurn Formation, note the open fractures filled with gypsum	
and the moderate spacing between them, Station 11, Sector 27	. 95
Fig.(3-28): vertical to steeply dipping fractures in El Qurn Formation, note the moderately	
spaced fractures; station 12, Sector 28	
Fig.(3-29): steep cliff showing the moderately spaced fractures, Station 13, Sector 30	
Fig. (3-30): N40W fractures with moderately open vertical spacing. Station 15, sector 32	. 98
Fig. (3-31): vertical moderately open NW fractures in the Wadi Hof Formation, Station 27,	105
Qattamiya City	. 107
Fig. (3-32): E-W and N-S extensional fractures in Wadi Hof Formation, Note the failure	
occur along these fractures and the open spacing with rough surface fractures.,	4.0=
Station 28.	
Fig. (3-33): Calcite filling fractures, Wadi Hof Formation, Qattmiya area. Staion 29	110
Fig. (3-34): Gypsum crystallization along the N72W fractures, note the radial	110
concentric shape of the crystallization, Station 34	
Fig. (4.1): Sample location map, 15 May City and its northern extension	
Fig.(4.2.a): Stress-Strain Curve of linear elastic material	118
Fig.(4.2.b): Stress-strain curve of Perfectly elastic material, showing tangent modulus (E),	110
and secant modulus (Esec)	
Fig.(4.3): Typical stress - strain curves for rock in unconfined compression	
Fig.(4.4): Generalized stress-strain curve.	
Fig.(4.5A): Principal triaxial test, Coulomb-Navier Criterion	. 12/

Fig.(4.5B): Mohr s Criterion	127
Fig.(4.5C): Stress distribution at the ends of Griffith's microcracks	127
Fig.(4.6). Crack growth from an elliptical flaw, Theoretical elliptical flaw	
Fig.(4.7): Diagram for classification of rocks on the basis of uniaxial mechanical Properties.	138
Fig.(4-8): Indirect tension test (Brazilian test).	
Fig. (4.9): Longitudinal section of the Schmidt hammer	
Fig.(4-10): Double shear stress test.	147
Fig. (4.12): Frequency distribution histograms of physical and mechanical properties	152
Fig. (4.12): Stress-Strain curves for tested samples of 15 th of May City and its northern	151
extension	154
of May City	167
Fig.(4.14):Mohr's circles and envelope determined from Coulomb's concept for the average compressive and tensile strength, of the foundation bedrock of 15 th of May city	180
Fig. (4.15): Photographs showing mode of failure under uniaxial compressive stress,	100
15 th of May City	183
Fig. (4.16): Linear and exponential regression of porosity on the uniaxial compressive	100
Strength	186
Fig. (4.17): Linear and exponential regression of Density on the uniaxial compressive strength	
Fig. (4.18): Linear and exponential regression of Rebound Index on the uniaxial compressive	189
strength	
Fig. (4.19): Linear and exponential regression of Porosity on the Tensile strength	190
Fig. (4.20): Linear and exponential regression of Density on the Tensile strength	
Fig. (4.21): Linear and exponential regression of Porosity on the Shear strength	193
Fig. (4.22): Linear and exponential regression of Density on the Shear strength	195
Fig. (4.23): Linear and exponential regression of Porosity on the Young's Modulus	196
Fig. (4.24): Linear and exponential regression of Density on the Young's Modulus	198
Fig. (4.25): Linear and exponential regression of Porosity on the Rebound Index	199
Fig. (4.26): Linear and exponential regression of Density on the Rebound Index	200
Fig. (5.1): Photograph showing major cracks in the exterior walls at doors and windows,	• • •
Qattamiya City	205
Fig. (5.2): Photograph showing the damage of building walls and concrete slabs, Qattamiya	
City	205
	206
Fig (5.4): Photographs showing the Hairline cracks and the open severe cracks in the exterior	
and interior walls as a result of upward soil expansion, Qattamiya city	
Fig. (5.5): Photograph showing the collapsing of huge building, Qattamiya City	209
Fig.(5.6): Photograph showing the cracking in low rise building due to movement in	
expansive clay, Qattamiya area	
Fig. (5-7): Sample location map, Qattamiya City and its extensions	214
Fig.(5.8): Frequency distribution histograms of physical and mechanical properties of	
Qattamiya soil samples	217
Fig. (5.9): Atterberg Limits	221
Fig. (5.10): Liquid limit test: (A) liquid limit device; (B) grooving tool; (C) soil pat	
before test; (D); soil pat after test	221
Fig. (5.11): photograph showing the Caasagrand apparatus	223
Fig. (5.12): Flow curve for liquid limit determination of a silty clay	223
Fig.(5.13): Estimation of shrinkage from plasticity chart	
Fig.(5.14): Swelling potential classification	
Fig.(5.15): Plasticity chart, and Unified Soil Classification for studied samples	