

Treatment of hazardous refractory wastewater from natural gas and carpet industries

A Thesis

Thesis Submitted for Partial fulfillment ofrequirement for the degree of Master of Science

Introduced by

AbdelrhmanMagdyAbdelaziz Shana

Water Pollution Research Department
National Research Centre
B.SC. of Chemistry 2009

Faculty of Science- Al Azhar University

Supervisors

Prof.Dr.

Prof.Dr.

Mohamed Mahmoud Abo-AlyFayzaAly Nasr

Prof. of Inorganic Chemistry, Prof. of Water pollution research, Faculty of SciencWater pollution research Department Ain Shams University National Research Centre

Dr. Ibrahim Abdelalim Abdelfattah

Ass. Prof. of Water pollution research Water pollution research Department National Research Centre

Treatment of hazardous refractory wastewater from natural gas and carpet industries

Thesis Submitted By

AbdelrhmanMagdyAbdelaziz Shana

For the degree of master of science

To

Department of chemistry Faculty of science Ain Shams University

2018

APPROVAL SHEET

Treatment of hazardous refractory wastewater from natural gas and carpet industry

Presented By AbdelrhmanMagdyAbdelaziz Shana

Supervisors Approved

Prof.Dr. Mohamed Mahmoud Abo-Aly

Prof. of Inorganic Chemistry Faculty of Science Ain Shams University

Prof.Dr. FayzaAly Nasr

Prof. of Chemistry
Water pollution research Department
National Research Centre

Dr. Ibrahim Abdelalim Abdelfattah

Ass. Prof. of Chemistry
Water pollution research Department
National Research Centre

Head of chemistry Department

Prof. Dr. Ibrahim Husseiny Ali Badr

Treatment of hazardous refractory wastewater from natural gas and carpet industry

Thesis has been reviewed and approved by the following

Prof.Dr. Mohamed Mahmoud Abo-Aly

Prof. of Inorganic Chemistry Faculty of Science Ain Shams University

Prof.Dr. FayzaAly Nasr

Prof. of Chemistry
Water pollution research Department
National Research Centre

Prof.Dr.RagabRyad Amin Al Sakka

Prof. of Inorganic Chemistry NahdaUniversity, Benisuief.

Prof.Dr. Salah Mohamed Shaban

Prof. of Inorganic Chemistry Faculty of Science Al AzharUniversity

Head of chemistry Department

Prof. Dr. Ibrahim Husseiny Ali Badr

Name AbdelrhmanMagdyAbdelaziz Shana

Department	Chemistry-	Inorganic and	analytical	chemistry

Faculty Science

University Ain-Shams

Graduation Date 2009 Al Azhar University

Registration Date 2013

Date of award 2018

Acknowledgement

Many deep and sincere thanks are to **Prof. Dr. Mohamed Mahmoud Abo-Aly**, Chemistry Department, Faculty of Science, Ain Shams

University, for his kind contribution, advice and complete revision of the thesis.

Also, I am deeply indebted to **Prof. Dr. Fayza Aly Nasr,** Water Pollution Research Department, National Research Center, for her supervision of work, her valuable and enlightened guidance, as well as her fruitful discussion all along the course of work.

Moreover, I would like to express my great and sincere gratitude to Ass. Prof. Ibrahim Abdel-Aliem, Water Pollution Research Department, National Research Center, for his great support to the progress of this work, his valuable advice and kind supervision.

To my family, especially my mother's soul, my father for love, support, and inspiration they gave me.

Abdelrhman Magdy Abdelaziz Shana

Abstract

Name of candidate: Abdelrhman Magdy Abdelaziz Shana.

Degree: (M.Sc), Chemistry Department, Faculty of science, Ain Shams University (2017).

Title of thesis: Treatment of hazardous refractory wastewater from natural gas and carpet industries.

In this study, the efficiency of the treatment processes for removal of hazardous refractory wastewater from natural gas and carpet industries wastewater was investigated. The wastewater generated from subject industries is characterized by high concentration of COD and low BOD values. The BOD/COD is less than 0.3 which indicates that this wastewater inhibits the metabolic activity of bacterial seed due to their refractory properties causing biodegradability to be difficult. Therefore, either an effective wastewater pretreatment to increase the BOD/COD ratio followed by biological treatment, or coagulation-flocculation has to be carried out. In the case of gas industry wastewater, due to the low TSS concentration, conventional coagulation precipitation method is not considered adequate. A Fenton reagent [Fe²⁺/H₂O₂] is proposed for degradation of existing soluble organics in the wastewater. Optimum operating conditions were: H₂O₂ concentration of 1.6 M/L (one stoichiometry with COD), 60 mM/L of Fe²⁺ ions, at pH around 3 and optimal reaction time of 30 minutes. Results proved that, Fenton reagent is found suitable to improve the biodegradability of the raw gas processing wastewater, BOD/COD increased from 0.17 to 0.36 and a complete removal of phenols was achieved, making it feasible

to be treated biologically in an effective manner. The subsequent anaerobic treatment using UASB reactor at optimum HRT (18h) qualifies the treated wastewater for discharge into the sewerage system. The subsequent aerobic treatment using the Continuous-Flow Activated Sludge at 12h HRT qualifies the treated wastewater for discharge into the sea.

In the case of carpet industry wastewater which contains high concentration of suspended solids, coagulation-precipitation was selected as feasible solution for the treatment. Chemical coagulation process using ferric chloride (1.8g/l), flocculent (3 mg/l) at pH 8 achieved COD removal efficiencies of 99.1 whereas using ferrous sulfate (3 g/l), flocculent (2 mg/l) at pH 7 achieved 98.8% COD removal. Corresponding TSS removal values were 98.5 and 97.8%, respectively. Characteristics of the treated wastewater using both ferric chloride and ferrous sulfate were found to be complying with the permissible limits for wastewater discharge into public sewerage system. However, the treated effluent by ferric chloride was found to be more favorable for economic advantage.

Keywords: Refractory, Industrial, Wastewater, treatment, Fenton, Biological.

Supervisors:

Prof.Dr. Mohamed Mahmoud Abo-Aly

Prof.Dr. Fayza Aly Nasr

Ass. Prof. Ibrahim Abdelalim Abdelfattah

List of Figures

Figures		Page
Figure 1.1	Schematic representation of zeta potential	6
Figure 2.1	Schematic diagram of the Jar test apparatus	22
Figure 2.2	Schematic diagram of the Batch activated sludge reactor	24
Figure 2.3	Schematic drawing of the continuous activated sludge reactor	25
Figure 2.4	Schematic diagram of the UASB reactor	27
Figure 3.1	Schematic diagram of the natural gas wastewater sources	30
Figure 3.2	Effect of different hydrogen peroxide doses on COD removal and BOD/COD ratio	33
Figure 3.3	Effect of different Fe ⁺² doses on the COD removal and BOD/COD ratio.	34

Figure 3.4	Effect reaction times on the removal of COD and BOD/COD ratio.	35
Figure 3.5	Efficiency of Fenton process on the treatment of gas processing wastewater at optimum operating conditions.	36
Figure 3.6	Variation of COD in UASB reactor effluent at 8, 12, 18 and 24 h	40
Figure 3.7	Average COD in raw wastewater and UASB reactor effluent at 8, 12, 18 and 24 h	41
Figure 3.8	Variation of BOD in UASB reactor effluent at 8, 12, 18 and 24 h	42
Figure 3.9	Average BOD in raw wastewater and in UASB reactor effluent at 8, 12, 18 and 24 h	42

Figure 3.10	Variation of TSS in UASB reactor effluent at	44
	8, 12 , 18 and 24 h	
Figure 3.11	Average TSS in raw wastewater and UASB	45
	reactor effluent at 8, 12 , 18 and 24 h	
Figure 3.12	Average COD, BOD and TSS in UASB	45
	reactor effluent at 8, 12 , 18 and 24 h	
Figure 3.13	Variation of TKN in UASB reactor effluent	47
	at 8, 12, 18 and 24 h	
Figure 3.14	Average TKN in raw & UASB effluent	47
Figure 3.15	Variation of ammonia in UASB reactor	49
	effluent at 8, 12 , 18 and 24 h	
Figure 3.16	Average ammonia in raw wastewater and	49
	UASB reactor effluent at 8 , 12 , 18 and 24 h	
Figure 3.17	Average TKN and ammonia in UASB	50
	reactor effluent at 8, 12 ,18 and 24h	

Figure 3.18	Variation of total phosphorus in the UASB reactor effluent at 8, 12, 18 and 24h	51
Figure3.19	Average total phosphorus in raw wastewater and the UASB reactor effluent at 8, 12,18 and 24h	51
Figure3.20	Cycle pattern of the Sequencing Batch Reactor	55
Figure3.21	Effect of aeration time on the biological activated sludge treatment for Fenton pretreated natural gas wastewater	58
Figure3.22	Variation of COD in raw wastewater and AS effluent	60
Figure3.23	Variation of BOD in raw wastewater and AS effluent	61

T	C	C.
	OT:	figures
	~J .J	, , , , , , , , ,

Figure3.24	Variation of TSS in raw wastewater and AS	62
	effluent	
Figure3.25	COD, BOD, TSS concentration in raw, fenton pretreated wastewater and SBR effluent.	62
Figure3.26	Variation of Nitrogen in raw wastewater and AS effluent	63
Figure3.27	Variation of Phosphorus in raw wastewater and AS effluent	64
Figure3.28	TKN, TP concentration in raw , fenton pretreated wastewater and SBR treated effluent	64

T .	C	C.
Last	Ot:	figures
	~. <i>,</i> ,	,

Figure3.29	Schematic diagram of Carpet industry wastewater sources	66
Figure3.30	Effect of pH on the removal of COD of $FeCl_3$ and $FeSO_4$ coagulants.	70
Figure 3.31	Effect of different ferric chloride doses on COD removal at constant pH and polymer dose.	72
Figure 3.32	Effect of different ferrous sulphate doses on COD removal at constant pH and polymer dose.	72

Figure 3.33	Effect of different polymer doses on COD	73
	removal at constant pH and ferric chloride	
	dose.	

Figure 3.34 Effect of different polymer doses on COD 74
removal at constant pH and ferrous sulfate
dose

Figure 3.35 Efficiency of coagulation process using 75

FeCl₃ and FeSO₄ as coagulants on the treatment of carpet and rug wastewater at optimum operating conditions.