STEM CELL TRANSPLANTATION IN PATIENTS WITH CEREBRAL PALSY

THESIS Submitted for partial fulfillment of M.D. Degree in Neurology

By

Amr Hassan El Sayed El Hassany

M.B.B.CH., M.Sc., Cairo University

Supervised by

Prof. Dr. Mahassen Ali Hassan

Professor of Neurology - Cairo University

Prof. Dr. Hala Gabr

Professor of Clinical Pathology – Cairo University

Dr. Shereen Fathi

Ass. Professor of Neurology – Cairo University

Dr. Gehan Ramzy

Ass. Professor of Neurology - Cairo University

Department of Neurology – Faculty of Medicine Cairo University 2010 II

11

(:)

ACKNOWLEDGEMENT

I would like to express my deepest gratitude and sincere thanks to Prof. Dr. Mahassen Ali Hassan, Professor of Neurology, Cairo University, the unique Neurologist, for her continuous guidance, supervision and suggestion of this work. I appreciate her hard support and powerful push and above all acceptance of my annoyance with endless patience, she was really the heart of this work.

I wish to express my deepest thanks and gratitude to Prof. Dr. **Hala Gabr**, Professor of Clinical Pathology, Cairo University, for her kind support, constructive criticism and valuable assistance specially In performing the lab work, without which, this work could not have been accomplished.

I am extremely grateful to Dr. **Shereen Fathi**, Ass. Professor of Neurology, Cairo University, for her great care, continuous guidance, excellent supervision and valuable suggestion, saving no effort or time during the whole work.

I would like to extend my appreciation and deep thanks to Dr. Gehan Ramzy, Ass. Professor of Neurology, Cairo University for her kind, calm and extremely helpful attitude.

I wish to express my deepest thanks to Dr. **Nermin Adel**, Ass. Professor of Neurology, Cairo University, for her kind support and valuable assistance.

I would like to extend my appreciation to Dr. **Heba Fathi**, Lecturer of Psychiatry, Cairo University for her kind help in choosing scales used in the study.

I would like to thank Dr. **Mariam Thabet**, a Clinical Pathologist, for her kind help in performing the lab work .

I wish to thank all members of Neurology Department, Cairo University, for their support and encouragement throughout the work.

 \boldsymbol{F} inally, I am really grateful to all patients who participated in this work.

Amr Hassan 2010

TO MY BELOVED FATHER (GOD BLESS HIM)

TO MY GREAT MOTHER

TO MY FAMILY

CONTENTS

	Page
List of Abbreviations	
List of Tables	
List of Figures	
Introduction	1
Aim of the Work	4
Review of Literature:	5
. Cerebral palsy	5
. Biology of stem cell.	31
. Stem cell transplantation	56
Subjects and Methods	80
Results	94
Discussion	121
Summary and Conclusions	133
Recommendations	137
References	139
Appendices	161
Arabic Summary	

ABSTRACT

Background: Cerebralpalsy is an "umbrella term covering a group of non-progressivemotor impairment syndromes secondary tolesions or anomalies of the brain arising in the early stages of its development". Stem cells are well known to be capable of differentiating into specialized cells performing different functions in the body. A stem cell transplantation (SCT) technology represents a new feasible approach to the treatment for a number of diseases including cerebral palsy. Purpose of study: was to study the impact of SCT on psychomotor functions in patients with cerebral palsy. Subject and Methods: This randomized control trial was conducted on 52 Egyptian patients presenting with cerebral palsy, they were divided into 2 groups; Group I: Patients who underwent stem cell transplantation and Group II (control group): Patients who did not undergo stem cell transplantation .All patients (Group I & II) were subjected to the following battery of assessment after parent/s consent; history taking, examination and clinical measures of disabilities that includeGross Motor Function Classification System(GMFCS), Boyd's Progress Developmental Scale and the 100 Points Scale. SCTwas done group I through bone marrow aspiration then isolation and culturing of MSCS followed by reinjectioninto the subarachinoid space via puncture.All patients were reassessed year 1 assessment. Results: Assessment of the patients in study group (group I) using Boyd's developmental progress scale revealed that mean score for the motor skills was 8.19 ±8.75 prior to SCT &9.19±8.99 after SCT, score for the independence skills was 9.23±8.55 prior to SCT &10.19±8.99after SCT, mean the communication skills was 10.19 ± 8.99 prior to &11.5±7.39after SCT, all these differences were statistically significant (P value < 0.05). Assessment of the patients in study group (group I) using 100 points scale revealed that mean score was 47.3 ±32.68 prior to SCT & 50.57±34.00 after SCT, this difference was statistically significant (P value < 0.05). As regard GMFCS, mean score was 4.23±1.37prior to SCT &4.15±1.46after SCT, this difference was statistically insignificant (P value > 0.05). Conclusion: Autologous stem cell transplantation could be a safe &helpful tool in the management of patients with cerebral palsy.

Keywords:

- Autologous stem cell transplantation
- Cerebral palsy.

LIST OF ABBREVIATIONS

AABB : American Association of Blood Banks
AAN : American Academy of Neurology
BDNF : Brain derived neurotrophic factor

BM :Bone marrow BW :Body weight

CD :Cluster of differntiation CNS :Central nervous system

CP :Cerebral palsy :Cerebrospinal fluid

CT :Computerized tomography

DMEM :Dulbecco's Modified Eagle Medium

DNA :Deoxy Nucleic Acid

EDSS :Expanded disability status scale

EEG :Electroencephalography

EG :Embryonic germ

EGF :Endothelial growth factor **ES** :Embyronic stem cells

FACS :Fluorescence-activated cell sorting **FDA** :Food and Drug Administration

FFT :Fast Fourier transformer FITC :Fluorescene isothiocyanate FGF-2 :Fibroblast growth factor-2

G-CSF :Granulocyte colony stimulating factor

GMFCS :Gross Motor Function Classification System

HLA :Human leukocyte antigen **hNSCs** :Human neural stem cells

HSC :Human stem cells

hUCSC :Human umbilical cord stem cell

IMDM : Iscove's modified Dulbecco's medium

LRP :Lineage restricted precursors

MNC : Mononuclear cells

MRI : Magnetic resonance imaging

MS :Multiple sclerosis

MSCs :Mesenchymal stem cells
NGF :Nerve growth factor
NSCs :Neural stem cells

NSPs: :Neural stem/progenitor cells

NT3: :Neurotrophin-3

P :Probability

PBS :Phosphate buffer saline

PE :Phycoerythrin

PET : Positron emission tomography

PMT :Photomultiplier tubes
RMS :Rostral migratory stream

ROM :Range-of-motion rpm :round per minute

SCs :Stem cells

SCID :Severe combined immunodeficiency

SCT :Stem cell transplantation
SD :Standard deviation
SP :Side population

SPSS :Statistical Package Social Science

SVZ :Subventricular zone
TBI :Traumatic brain injury
TNF :Tumor necrosis factor
UCB :Umbilical cord blood

LIST OF TABLES

Гable	Title	Page
1	100 Points Scale	85
2	Gender distribution:in:study:and/control/groups	94
3	Mean age in study and control groups	95
4	Distribution of different clinical syndromes in study and control groups	96
5	Initial assessment of study and control groups using Boyd's developmental progress scale	99
6	Follow up assessment of study group and control groups using Boyd's developmental progress scale.	101
7	Comparison between improvement of study and control groups in Boyd's developmental progress scale	102
8	Comparison of assessment of patients in study group using Boyd's developmental progress scale pre and post SCT.	103
9	Comparison of initial and follow up assessment of patients in control group using Boyd's developmental progress scale.	105
10	Comparison of percent of change of Boyd's developmental progress scale in study and control groups.	106
11	Results of assessment of study and control groups using 100 points scale.	108
12	Comparison between patients of study and control group regarding functions improved in 100 points scale.	109
13	Comparison between patients of study and control groups regarding improvement in total score of 100 points scale	110
14	Comparison of assessment of patients in study group using 100 points scale pre and post SCT	110
15	Comparison of initial and follow up assessment of patients in control group using 100 points scale	111

16	Comparison of percent changes of the 100 points scale in study and control groups.	112
17	Results of initial and follow up assessment of study and control groups using GMFCS.	114
18	Comparison between patients of study and control groups regarding improvement in GMFCS	115
19	Comparison of assessment of patients in study group using GMFCS pre and post SCT	115
20	Comparison of initial and follow up assessment of patients in control group using GMFCS	116
21	Comparison of percent of change of GMFCS in study and control groups	117

د

LIST OF FIGURES

Fig	Title	Page
1	Stem cell self-renewal.	32
2	Unidirectional stem cell differentiation.	34
3	The stem cell life cycle.	36
4	Fate of the stem cell.	37
5	The origin, isolation and specialization of stem cells	39
6	The blastocyst.	40
7	Hematopoietic and stromal stem cell differentiation.	44
8	Autologous transplant process	57
9	Potential therapeutic uses of stem cell.	59
10	Basic approaches for bone marrow aspiration.	86
11	Gender distribution in both groups.	95
12	Mean age in both groups	96
13	Distribution of different clinical syndromes in study group	97
14	Distribution of different clinical syndromes in control group	97
15	Immediate complications of SCT in the study group	98
16	Initial assessment of study group control groups using Boyd's	100
	developmental progress scale	100
17	Follow up assessment of study and control groups using Boyd's	
	developmental progress scale	101
18	Comparison of assessment of patients in study group using Boyd's	
	developmental progress scale pre and post SCT	104
19	Comparison of initial and follow up assessment of patients in control	
	group using Boyd's developmental progress scale	105
20	Comparison of percent of change of Boyd's developmental progress	
	scale in study and control groups.	

٥

Fig	Title	Page
21	Results of initial and control assessment of study and control groups using 100 points scale	107
22	Comparison of assessment of patients in study group using 100 points scale pre and post SCT	100
23	Comparison of initial and follow up assessment of patients in control	111
24	group using 100 points scale	112
25	Results of assessment of study and control groups using GMFCS.	113
26	Comparison of assessment of patients in study group using GMFCS pre and post SCT	114
27	Comparison of initial and follow up assessment of patients in control group using GMFCS	116
28	Comparison of percent of change of GMFCS in study and control groups.	117

Introduction

INTRODUCTION

Cerebral palsy is "an umbrella term covering a group of non-progressive, but often changing, motor impairment syndromes secondary to lesions or anomalies of the brain arising in the early stages of development." (*Mutch et al., 1992*).

This condition has devastating consequences for the individual and for society. Multiple factors can cause injury to the developing brain leading to cerebral palsy. Many preconceptional, prenatal and perinatal factors (oxidative damage, perinatal hypoxia/ischemia and maternal infection among others) are known to be associated with brain injury (*Stanley et al., 2000*).

There are no effective means to repair the brain once damage has occurred. Moreover, since many of these insults occur in utero, prevention may prove difficult, and regenerative strategies may be a better alternative to reduce the damage to the brain (*Plane et al.*, 2004).

Neural stem/progenitor cells (NSPs) have been recently identified in the mammalian central nervous system, including humans, at all stages of life. Defined as self-renewing, primordial cells with the capacity to give rise to all cell lineages in all regions of the nervous system, Neural stem/progenitor cells (NSPs) are found in the germinal zone in the brain of the embryo and fetus where they participate in central nervous system formation. Cells