List of contents

F	Page
Acknowledgement	_
List of Abbreviations	
List of Tables	III
List of Figures	IV
Introduction and Aim of The Work	1
Review of Literature	3
Chapter 1 : Pain	3
Chapter 2 : Bupivacaine	25
Chapter 3 : Clonidine	35
Chapter 4 : Lumbar plexus block	43
Patients and Methods	55
Results	61
Discussion	77
Summary	91
References	95
Arabic Summary	

List of Abbreviations

ACL : Anterior cruciate ligament

ACLS : Advanced Cardiac Life Support Guidelines

AV : Atrioventricular

CGRP : Calcitonin gene-related peptide

CNS : Central nervous system

COX-2 : Cyclooxygenase-2

DPQ : Dartmouth pain Questionnaire

EAA : Excitatory amino acids

ECG : Electrocardiogram

HR : Heart rate

IVRA : Intravenous regional anesthesia

LA : Local anesthetic LP : Lumbar plexus

LPB : Lumbar plexus block

MAOI : Monoamine oxidase inhibitorsMPQ : Mc Gill pain QuestionnaireNMDA : N-methyl-D-aspartic acid

NSAID : Non-steroidal anti-inflammatory drugs

PCB : Psoas compartment block

PSIS : The posterior superior iliac spine

RR : Respiratory rate
SP : Spinous process

SPET : Single positron emission tomography

TCA : Tricyclic antidepressants

VC : VasoconstrictorsVRS : Verbal rating scaleWDR : Wide dynamic range

WHYPQ : West Haven-Yale pain Questionnaire

List of Tables

Table No.	Title	Page
1	Demographic data	61
2	Sex prevalence	62
3	Comparison between the three studied groups as regards VAS	64
4	Comparison between the three studied groups as number of postoperative analgesic doses.	65
5	Comparison between the three studied groups as regarding sedation scores	67
6	Comparison between the three studied groups as regarding SBP	69
7	Comparison between the three studied groups as regarding DBP	70
8	Comparison between the three studied groups as regarding HR	72
9	Comparison between the three studied groups as regarding RR	74
10	Comparison between the three studied groups as regarding blood cortisol level	76

List of Figures

Table No.	Title	Page
1	Sense organs in the skin	4
2	A-Delta and C fibers	5
3	Pain pathway	7
4	Diagrammatic representation of the four	8
	processes involved in the sensory pathway	
5	VAS	15
6	VRS and Wong scale	16
7	McGill pain questionnaire	17
8	Algorithm for the management of LA systemic toxicity	28
9	Lumbar plexus	44
10	The L4 approach to the Lumbar plexus	48
	(Capdevila's)	
11	The L4-L5 approach to the Lumbar plexus	49
	(Winnie's)	
12	The L4-L5 approach to the Lumbar plexus	50
	(Chayen's)	
13	The L3 approach to the Lumbar plexus	51
	(Dekrey's)	
14	Demographic data	61
15	Sex prevalence	62
16	Comparison between the three studied	64
	groups as regards VAS	
17	Comparison between the three studied	67
10	groups as regarding sedation scores	
18	Comparison between the three studied	69
10	groups as regarding SBP	70
19	Comparison between the three studied	70
	groups as regarding DBP	

List of Figures (Cont.)

Table No.	Title	Page
20	Comparison between the three studied	72
	groups as regarding HR	
21	Comparison between the three studied	74
	groups as regarding RR	
22	Comparison between the three studied	76
	groups as regarding blood cortisol level	

Acknowledgment

First and foremost thanks to ALLAH, the most beneficent and merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Nabil Mohamed Abd El-Moaty**, Prof. of anesthesiology and intensive care medicine, Ain Shams University, who suggested this subject for reviewing and for his supervision, continuous help and patience. It was a great honor to me to work under his supervision.

I wish to express my sincere thanks and deepest gratitude to **Prof. Azza Youssef Ibrahim** Prof. of anesthesiology and intensive care medicine, Ain Shams University for her eminent guidance, encouragement and revision throughout the work.

Also, I would like to express my sincere thanks and deep gratitude to **Prof. Dr. Raouf Ramzy Gad-Allah** Assistant Prof. of anesthesiology and intensive care medicine, Ain Shams University, for his keen and valuable guidance and encouraging for applying some of these techniques.

Special appreciation to **Dr.Sherif George Anis** Lecturer of Anesthesiology and intensive care medicine, Ain Shams University, for his kind advice, valuable instructions and continuous support which was the corner stone in the completion of this work.

Last but not least, I would like to present a lot of thanks to my family, friends, and to my colleagues, whose without their help and support, this work could not come to birth.

Raham Hasan Mostafa

Lumbar Plexus Block as a Method of Postoperative Analgesia after Hip Surgery

Thesis

Submitted for partial fulfillment Of M.D. Degree in **Anesthesiology**

Presented by

Raham Hasan Mostafa El-Owaidy

M.B.B.Ch., M. Sc. Ain Shams University

Under supervision of

Prof. Dr. Nabil Mohamed Abd El-Moaty

Professor of Anesthesia and Intensive Care Faculty of Medicine, Ain Shams University

Prof. Dr. Azza Youssef Ibrahim

Professor of Anesthesia and Intensive Care Faculty of Medicine, Ain Shams University

Prof. Dr. Raouf Ramzy Gad-Allah

Professor of Anesthesia and Intensive Care Faculty of Medicine, Ain Shams University

Dr. Sherif George Anis

Lecturer of Anesthesia and Intensive Care Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2010

تخدير الضفيرة القطنية كوسيلة لتسكين الألم بعد العمليات الجراحية بالفخذ

رسالة توطئة للحصول على درجة الدكتوراه في التخدير

مقدمة من الطبيبة / رهام حسن مصطفى العويضى بكالوريوس الطب والجراحة وماجسيتر التخدير كلية الطب – جامعة عين شمس

تحت إشراف

الأستاذ الدكتور / نبيل محمد عبد المعطى

أستاذ التخدير والرعاية المركزة كلية الطب - جامعة عين شمس

الأستاذة الدكتور / عزة يوسف إبراهيم

أستاذ التخدير والرعاية المركزة كلية الطب – جامعة عين شمس

الأستاذ الدكتور / رؤوف رمزى جاد الله

أستاذ التخدير والرعاية المركزة كلية الطب – جامعة عين شمس

الدكتور / شريف جورج أنيس

مدرس التخدير والرعاية المركزة كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس 2010

الملخص العربي

يعتبر الألم تجربة واعية قد تتأثر بالعديد من العوامل مثل التغيرات في التصنيع الحسي-البدني أو العوامل النفسية و الاجتماعية.

الام ما بعد العمليات الجراحية لها العديد من المضاعفات علي سائر أعضاء الجسم مثل القلب و الجهاز العصبي إلخ ... و يعتبر تسكين الألم بعد عمليات الفخذ من أكبر التحديات خصوصا خلال الأربع و عشرون ساعة الأولي بعد العملية الجراحية. مما أدي إلي ظهور العديد من الأساليب لتسكين آلام ما بعد عمليات الفخذ منها على سبيل المثال البنج النصفى و تخدير الضفيرة القطنية.

علي مدي العشر سنوات الماضية , أدت التطورات العديدة إلي زيادة الاهتمام بتخدير أعصاب الأطراف السفلية.

هدف هذه الدراسة هو تقييم تخدير الضفيرة القطنية كوسيلة فعالة لتسكين آلام ما بعد العمليات الجراحية بالفخذ بالإضافة إلى اختبار فعالية إضافة عقار الكلونيدين للبيوبيفاكين و مدى تأثيره عليه.

تم تقسيم المرضي إلي ثلاث مجموعات متساوية . كل مجموعة اشتملت على 20 مريض.

تم تثبيت أسلوب التخدير الكلي في جميع الحالات.

في نهاية العملية الجراحية و بعد عودة القوة العضلية,تم عمل الأتي:

في مجموعة (أ):

تم سحب الأنبوبة الحنجرية من الحنجرة بعد الوصول إلي معايير سحب الأنبوبة الحنجرية.

في مجموعة (ب):

المرضي المنتمين لهذه المجموعة، تم حقن جرعة واحدة من المحلول المكون من مزيج 15 ملل من البيوبيفاكين 0,5% + 15 ملل محلول ملح 0،9% عن طريق استخدام تخدير الضفيرة القطنية ثم تم سحب الأنبوبة الحنجرية مثل مجموعة أ.

في مجموعة (ج):

للمرضي المنتمين لهذه المجموعة, تم إضافة عقار الكلونيدين (75 ميكروجم) أي ما يعادل (2.5 ميكروجرام /ملل) علي نفس المزيج المستخدم في مجموعة (ب) ثم تم سحب الأنبوبة الحنجرية مثل المجموعتين السابقتين.

و قد تم متابعة الآتي خلال الساعات الأربع و العشرين للدراسة: قياس معدل الألم ،قياس استهلاك الأدوية المسكنة،قياس معدل التهدئة،قياس الوظائف الحيوية، قياس معدل حدوث أعراض جانبية بالإضافة إلي قياس نسبة مستوي الكورتيزول بالدم.

و قد أوضحت الدراسة النتائج الآتية:

تخدير الضفيرة القطنية يعتبر وسيلة فعالة و ممتازة لتسكين آلام ما بعد العمليات الجراحية بالفخذ و أن إضافة عقار الكلونيدين للبيوبيفاكين قد أدي إلي تقليل استهلاك الأدوية المسكنة لمدة 12 ساعة بعد العملية الجراحية.

Introduction

Clinical experience has demonstrated that postoperative pain in total hip arthroplasty is severe and worsens with patient mobilization. Effective relief of postoperative pain is essential for patient comfort and satisfaction, allows greater mobility, minimizes postoperative morbidity and mortality, and promotes faster recovery by preventing or decreasing muscle spasms that hinder early joint mobilization (*Fischer and Simanski*, 2005).

Pain after hip surgeries is severe, especially during the first 24 hours after surgery. Techniques used more commonly for analgesia after hip surgeries include patient-controlled analgesia (PCA) with IV opioids, subarachnoid analgesia, epidural analgesia, and anterior or posterior (psoas compartment block) lumbar plexus block (*Capdevila et al.*, 2002).

Posterior lumbar plexus block promotes effective unilateral analgesia after total hip arthroplasty, reducing pain scores and consumption of analgesics (*Duarte et al.*, 2009)

The posterior approach to the lumbar plexus is associated with the risk of dispersion or inadvertent injection of the anesthetic solution in the epidural or subarachnoid space (*Duarte and Saraiva*, 2006).

Clonidine is an α_2 -adrenergic agonist that is increasingly used as an adjuvant to local anesthetics administered peripherally. α_2 agonists such as clonidine, produce analgesia via supraspinal and spinal adrenergic receptors. Clonidine has also direct inhibitory effects on peripheral nerve conduction (A and C nerve fibers) (*Duflo et al.*, 2005).

Aim of the Work

The purpose of this study is to evaluate lumbar plexus nerve blockade as an effective technique in managing postoperative pain after hip surgery.

The aim of this thesis is also to test the efficacy of addition of clonidine to bupivacaine in prolongation of bupivacaine's effect.

CHAPTER (1) Pain

Definition of pain:

The International Association for the Study of Pain defines pain as "An unpleasant sensory and emotional experience associated with actual or potential tissue damage." This definition recognizes the interplay between the objective physiologic sensory aspects of pain and its subjective emotional and psychological components (*Carr and Goudas*, 1999).

Pain is clinically divided into: <u>acute pain</u> which is primarily due to nociception and <u>chronic pain</u> which may also be due to nociception, but in which psychological and behavioral factors often play a major role. <u>Postoperative pain</u> is one of the types of acute pain and can be further differentiated based on the origin and feature into somatic and visceral pain. <u>Somatic pain</u> is due to nociceptive input arising from skin, subcutaneous tissues and mucous membranes. It is characterized by being well-localized and described as sharp, pricking, throbbing or burning sensation. <u>Visceral pain</u> - on the other hand - is due to nociceptive input arising from internal organ or one of its covering. It is usually dull diffuse pain which is frequently associated with abnormal sympathetic or parasympathetic activity causing nausea, vomiting, sweating and /or changes in blood pressure or heart rate (*Grubb*, *2001*).

Many factors influence the occurrence, intensity, quality and duration of postoperative pain like the site, nature and duration of operation, type of incision, the preoperative psychological, physical and pharmacological preparation of the patient, added to this the anesthetic management and the quality of post operative care (*Grubb*, 2001).

Review of Literature

So, in order to achieve good quality of postoperative analgesia, careful history should be taken from the patients about any coexisting medical conditions such as substance abuse or withdrawal, anxiety disorder, affective disorder, hepatic or renal impairment and any past history of poor pain management. In addition, preoperative patient education should be done to the patients to improve expectations, compliance and ability to effectively interact with pain management techniques (*Chris*, 2003).

Neuro-physiology of pain:

Nociceptors:

Sensation is often described as either protopathic (noxious) or epicritic (non-noxious). Epicritic sensation (light touch, pressure, proprioception and temperature discrimination) is received by low-threshold receptors (specialized endorgans on the afferent neurons) (fig. 1) and conducted by large myelinated nerve fibers while; protopathic sensation (pain) is sub served by high-threshold receptors (free nerve endings) (Carr and Goudas, 1999).

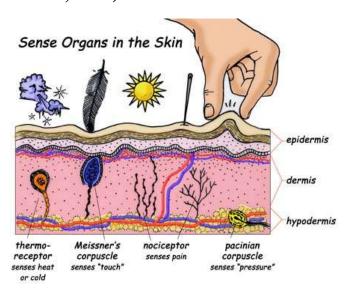


Figure (1): Sense organs in the skin (Julius and Basbaum, 2001)

Noxious sensations can often be broken down into two components: a fast, sharp and well-localized sensation "first pain" which is conducted by A- delta fibers; and a duller, slower onset and poorly localized sensation "second pain" which is conducted by C fibers (fig. 2) (*Julius and Basbaum*, 2001).

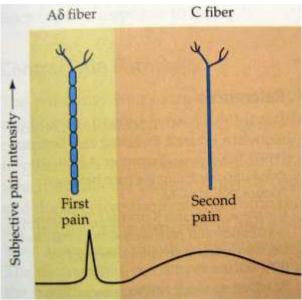


Figure (2): A- delta and C fibers (Julius and Basbaum, 2001)

This protopathic pain is transmitted mainly by free nerve endings that sense mechanical or chemical tissue damage. Several types of these pain receptors are recognized; (1) Mechano-nociceptors, which respond to pinprick (2) Silent nociceptors, which respond only on the presence of inflammation (3) Polymodal mechano-heat receptors which are more prevalent and respond to excessive pressure, extreme of temperature and pain producing substance (*Richardson and Mustard*, 2009).

Pain pathway:

Pain is conducted along three neuron pathways; from the periphery to the cerebral cortex.