CORONARY ARTERY BYPASS GRAFTS & NATIVE VESSEL IMAGING USING \(\xi\):-SLICE COMPUTED TOMOGRAPHY: COMPARISON WITH CATHETER ANGIOGRAPHY

Thesis

Submitted for partial fulfillment of M.D. Degree in Cardiology

By
Tarek Hassan Samir Assaf
M.S. Cardiology

Under supervision of
Professor / Omar Salah Awwad
Professor of Cardiology
Faculty of medicine-Ain Shams University

Professor / Osama Abdel Aziz Rifaie Professor of Cardiology Faculty of medicine-Ain Shams University

Professor / Nireen Khalifa Okasha Professor of Cardiology Faculty of medicine-Ain Shams University

Doctor / Adel Gamal Hassanein Ass. Professor of Cardiology Faculty of medicine-Ain Shams University

Doctor / Walid Abdel Azim El Hamady Ass. Professor of Cardiology Faculty of medicine-Ain Shams University

Ain Shams University

Acknowledgment

First and foremost thanks are to "ALLAH" the most beneficent and merciful.

I feel greatly indebted and thankful to Prof. Omar Awad, Prof. of Cardiology, Faculty of Medicine Ain-Shams University, for his continuous inspiration & guidance.

I feel grateful & thankful to Prof. Osama Refae, Prof. of Cardiology, Faculty of Medicine Ain-Shams University, for his great help and encouragement

I express my profound appreciation to Prof. Nereen Okasha prof. of Cardiology, Faculty of Medicine, Ain Shams University for her unlimited patience, for her no words of praise or gratitude can be sufficient and close supervision throughout the entire work.

Finally, I wish to express my deep and hot feelings to all the patients, doctors and nursing staff in Ain-Shams University hospital, who generously helped in the preparation of this work.

List of Contents

Intro	duction & aim of the work	١
Revie	ew of Literature:	
0	Established Imaging Modalities for Cardiac Diagnosis	٤
0	General Principles Of Computed Tomography Imaging	۲.
0	Detection & quantification of coronary artery calcium by MDCT	٣٧
0	Multi-slice Computed Tomography Angiography of the Coronary Arteries	٤٦
0	Coronary angiography after revascularization	٦ ٤
0	MSCT & Assessment of Coronary Bypass Grafts	٧.
Patie	nts & methods	۸۳
Resu	ts	۹ ۲
Discu	ission	1 7 7
Sumi	nary	۱۸٤
Conc	lusion	۱۸۷
Reco	nmendation	۱۸۸
Limit	ation of the study	١٨٩
Refer	ences	۱٩.
Arabi	c Summary	

List of Figures

		Page
Figure 1	The ischemic cascade representing the sequence of pathophysiologic events following ischemia	٧
Figure †	Example of a reversible defect on technetium 99m tetrofosmin SPECT	١.
Figure "	Example of a stress induced wall motion abnormality on dobutamine echocardiography	۱۲
Figure ‡	MR perfusion images in respectively rest (Panel A) and stress	18
Figure •	Non-invasive coronary angiography with MRI	10
Figure 7	A: Left coronary artery with its branches, as seen on a TD (left) and a multiplanar reconstruction (MPR); B: Noncontrast prospective scan showing a coronary arterial wall calcification (arrow) at the level of the left anterior descending artery	۱۷
Figure ^V	Cardiac CT timeline	Y 1
Figure A	A, one of the earliest scanners, constructed by G. Hounsfield. B, C, The first commercial CT scanners dedicated to brain imaging	YY
Figure 4	Hounsfield values of various tissues	Y0
Figure 1.	Spatial resolution as measured on computed tomography	٣.
Figure 11	The "vulnerable patient" pyramid proposes the use of coronary calcium quantification by CT and non-invasive CT angiography for the	٤١

	identification of patients at intermediate risk of a heart attack, as determined by general risk scoring methods such as Framingham or PROCAM	
Figure 17	Noncontrast prospective scan showing a coronary arterial wall calcification (arrow) at the level of the left anterior descending artery	٤٢
Figure 1"	Scanogram delineating the limits of the acquisition volume	01
Figure 15	Different grafts used in CABG surgery	۷۱
Figure 10	Graft implantation after CABG	۷۲
Figure 17	Cardiopulmonary bypass machine	۷۳
Figure 17	Bypass surgical incision	۷٤
Figure 11	10-segment American Heart Association model of the coronary tree	۸۷
Figure 19	A: CTA showing distal significant LM lesion. B: ICA confirms the results	١
Figure 🔭	A: CTA showing significant proximal LAD mixed lesion B; ICA confirms the previous result	۱۰۸
Figure †1	A: CTA showing significant LAD lesion just after anastomosis with LIMA graft. B; ICA confirms the previous result	1.9
Figure **	A: CTA of LCX showing ostial & mid LCX significant lesion B; ICA confirms the previous result showing a significant ostial & proximal lesion then totally occluded in its mid segment	110
Figure ""	A: CTA of LCX showing proximal lesions. B; ICA	ווו

	confirms the previous result
Figure 7:	A: CTA of RCA showing borderline calcified proximal lesion (red arrow) & mid segment significant lesions (yellow arrow) B; ICA confirms the previous result
Figure **	A: CTA of RCA showing multiple fibro-calcific plaques with mid segment lesion non-evaluable segment B; ICA showed atherosclerotic RCA with no significant lesion
Figure *7	A: CTA of RCA showing proximal significant lesion B; ICA confirmed the results
Figure *V	A: CTA of RCA showing mid segment significant lesion B; ICA confirmed the results showing a totally occluded mid segment
Figure 7A	MSCT cross sectional analysis showing marked reduction in RCA caliber at mid segment denoting significant lesion
Figure 19	A: CTA showing patent LIMA to LAD B; r -D reconstruction of the same patient C; ICA confirms the results
Figure "•	A: CTA showing patent LIMA to LAD B; ICA confirms the results
Figure "1	A & B CTA showing anastomotic site lesion of LIMA to LAD C; ICA confirms the results
Figure "Y	A: CTA reconstruction showing patent LIMA to LAD with diseased run off B; ICA confirms the results

Figure rr	A: & B MSCT shows patent SVG to OM. C: ICA confirms the MSCT result	1 E O
Figure "*	A: MSCT showing totally occluded SVG to OM, with a totally occluded stent at anastomotic site B: ICA showed the same results	187
Figure "°	CTA showing r -D reconstruction of an occluded SVG	۱٤۷
Figure 77	A: MSCT showing patent SVG to OM with a stenotic lesion. B: ICA confirms the MSCT result	۱٤۸
Figure "V	A & B: MSCT showing degenerative SVG to RCA with an anastomotic lesion. C: ICA confirms the MSCT result	129
Figure MA	A: MSCT showing degenerative SVG to OM with mid segment lesion. B: ICA confirms the MSCT result	10.
Figure "9	A: MSCT showing non-evaluable segments due to blooming effect of surgical clips, B: different projection of the graft confirmed its patency. C: ICA confirms the MSCT result	101
Figure :	A: MSCT showing filling defect (red Arrow) and a borderline lesion (yellow arrow). C: ICA revealed a thrombus containing lesion (red arrow) and confirmed the MSCT borderline lesion	101
Figure 11	A: MSCT showing filling defect (red Arrow) and a borderline lesion (yellow arrow). C: ICA revealed a thrombus containing lesion (red arrow) and confirmed the MSCT borderline	۱٥٣

	lesion	
Figure ^{£†}	A CTA showing anastomotic site stent of LIMA to LAD that was considered non-evaluable B; ICA confirms the patency of the anastomotic site	
	stent	701
Figure & "	A CTA showing a significant lesion (red arrow) just before a previously deployed patent stent (yellow arrow) B; ICA confirms the result	10V
Figure 👯	A: CTA shows a patent stent in proximal LAD B; ICA shows a borderline ISR	۱٥٨

List of Tables

		Page
Table 1	Population characteristics	٩٣
Table †	Number of coronary artery segments examined by MSCT & CA	9 £
Table "	Number of graft segments examined by MSCT & ICA	9 £
Table &	Total no. of segments examined by MSCT & ICA	97
Table •	Type & number of the excluded segment	97
Table 7	No. and significance of LM lesions examined by MSCT	٩ ٨
Table ^y	Comparison between LM lesion identified by MSCT & CA (excluding non-evaluable segments)	99
Table A	Sensitivity & specificity of MSCT for detection of significant LM lesion after exclusion of non evaluable segments	99
Table 4	Sensitivity & specificity of MSCT for detection of significant LM lesion including non evaluable segments	١
Table 1 ·	LAD Segments evaluated by MSCT	1.7
Table 11	Comparison between LAD lesion identified by MSCT & CA after exclusion of non evaluable segments	1.5
Table 17	Sensitivity & specificity of MSCT for detection of LAD lesion with exclusion of non-evaluable segments	1.0

Table 1"	Sensitivity & specificity of MSCT for detection of LAD lesion including non-evaluable segments	١٠٦
Table 15	Over all Sensitivity & specificity of MSCT for detection of LAD lesion	١.٧
Table 10	LCX Segments evaluated by MSCT	111
Table 17	Comparison between LCX lesions identified by MSCT & CA (excluding non evaluable segments)	117
Table 17	Sensitivity & specificity of MSCT for detection of LCX lesion with exclusion of non-evaluablee segments	117
Table 11	Sensitivity & specificity of MSCT for detection of LCX lesion including non-evaluable segments	115
Table 19	Overall Sensitivity & specificity of MSCT for detection of LCX lesion	۱۱٤
Table 🔨	RCA Segments evaluated by MSCT	۱۱۸
Table 👣	Comparison between RCA lesions identified by MSCT & CA (excluding non-evaluable segments)	119
Table **	Sensitivity & specificity of MSCT for detection of RCA lesion excluding non-evaluable segments	١٢.
Table ۲۳	Sensitivity & specificity of MSCT for detection of RCA lesion including non-evaluable segments	١٢.
Table 🌿	Overall Sensitivity & specificity of MSCT for detection of RCA lesion	171
Table ۲0	Arterial graft Segments evaluated by MSCT	١٢٧
Table 77	Comparison between arterial graft lesions identified by MSCT & CA (excluding non-	۱۲۸

	evaluable segments)	
Table TV	Sensitivity & specificity of MSCT for detection of arterial graft lesion excluding non-evaluable segments	179
Table M	Sensitivity & specificity of MSCT for detection of arterial graft lesion including non-evaluable segments	179
Table † 9	Overall Sensitivity & specificity of MSCT for detection of arterial graft lesion (on segmental basis)	۱۳.
Table *•	Comparison between arterial graft lesions identified by MSCT & CA (excluding non-evaluable grafts – Υ anastomotic site)	۱۳۱
Table "1	Overall Sensitivity & specificity of MSCT for detection of arterial graft lesion (excluding non-evaluable grafts)	181
Table "	Comparison between arterial graft lesions identified by MSCT & CA (including non-evaluable grafts)	١٣٢
Table ""	Overall Sensitivity & specificity of MSCT for detection of arterial graft lesion (including non-evaluable grafts)	١٣٢
Table ۴	Diagnostic accuracy of MSCT for detection of arterial graft total occlusion	١٣٣
Table 🔭	SVG segments evaluated by MSCT	۱۳۸
Table "7	Comparison between SVG lesions identified by MSCT & CA (excluding non evaluable segments)	1 4 9

Table "V	Sensitivity & specificity of MSCT for detection of SVG lesion excluding non evaluable segments	١٤.
Table M	Sensitivity & specificity of MSCT for detection of SVG lesion including non evaluable segments	1 £ •
Table *9	Overall Sensitivity & specificity of MSCT for detection of significant SVG lesion (on segmental basis)	1 £ 1
Table 😉	Comparison between venous graft lesions identified by MSCT & CA (excluding non-evaluable grafts)	1 £ Y
Table 11	Overall Sensitivity & specificity of MSCT for detection of venous graft lesion (excluding non-evaluable grafts)	1 £ Y
Table # *	Comparison between venous graft lesion identified by MSCT & CA (including non-evaluable grafts)	1 £ ٣
Table ٤٣	Overall Sensitivity & specificity of MSCT for detection of venous graft lesion (including non-evaluable grafts)	1 £ ٣
Table ધ	Diagnostic accuracy of MSCT for detection of venous graft total occlusion	1 £ £
Table 🕫	Total no. of stents examined by MSCT & ICA	105
Table 17	Sensitivity & specificity of MSCT for detection of significant ISR	100
Table [£]	Comparison between native segment lesions identified by MSCT & CA (excluding non-evaluable vessels)	109
Table & A	Diagnostic accuracy of MSCT for detection of	۱٦.

	native segment lesions (excluding non-evaluable vessels)	
Table £9	Comparison between native segment lesions identified by MSCT & CA (including non-evaluable vessels)	17.
Table ••	Diagnostic accuracy of MSCT for detection of native segment lesions (including non-evaluable vessels)	171
Table •1	Comparison between native vessel lesions identified by MSCT & CA (excluding non-evaluable vessels)	177
Table or	Diagnostic accuracy of MSCT for detection of native vessel lesions (excluding non-evaluable vessels)	174
Table or	Comparison between native vessel lesions identified by MSCT & CA (including non-evaluable vessels)	174
Table of	Diagnostic accuracy of MSCT for detection of native vessel lesions (including non evaluable vessels)	175
Table ••	Overall Sensitivity & specificity of MSCT for detection of all graft lesion (excluding non-evaluable grafts)	170
Table 07	Overall Sensitivity & specificity of MSCT for detection of all graft lesion (including non-evaluable grafts)	170
Table • Y	Overall Sensitivity & specificity of MSCT for detection of all graft occlusion	177

Table OA	Overall Sensitivity & specificity of MSCT for detection of all proximal native segments with the exclusion of non-evaluable segments	177
Table of	Overall Sensitivity & specificity of MSCT for detection of all distal native segments with the exclusion of non-evaluable segments	۱٦٨
Table 7	Overall Sensitivity & specificity of MSCT for detection of all proximal native segments with the inclusion of non-evaluable segments)	۱٦٨
Table 71	Overall Sensitivity & specificity of MSCT for detection of all distal native segments with the inclusion of non-evaluable segments	179
Table 77	Overall Sensitivity & specificity of MSCT for detection of all proximal graft segments with the exclusion of non-evaluable segments	١٧.
Table 7"	Overall Sensitivity & specificity of MSCT for detection of all distal graft segments with the exclusion of non-evaluable segments	١٧.
Table 74	Overall Sensitivity & specificity of MSCT for detection of all proximal graft segments with the inclusion of non-evaluable segments	171
Table 70	Overall Sensitivity & specificity of MSCT for detection of all distal graft segments with the inclusion of non-evaluable segments	1 / 1
Table 77	٦٤-Slice CT studies for detection of coronary artery lesion	177
Table 77	Post CABG 15-slice CT studies	۱۷۸

List of Abbreviation

(ADC) ANALOG-DIGITAL CONVERTERS

(CA) CORONARY ANGIOGRAPHY

(CABG) CORONARY ARTERY BY PASS GRAFT

(CAC) CORONARY ARTERY CALCIFICATION

(CAD) CORONARY ARTERY DISEASE

(CT) COMPUTED TOMOGRAPHY

(EBCT) ELECTRON-BEAM CT

(ECG) ELECTROCARDIOGRPHY

(ED) EMERGENCY DEPARTMENT

(EDV) END-DIASTOLIC VOLUME

(EF) EJECTION FRACTION

(ESV) END-SYSTOLIC VOLUME

(HU) HOUNSFIELD UNITS

(IMA) INTERNAL MAMMARY ARTERY

(LAD) LEFT ANTERIOR DESCENDING

(LCx) LEFT CIRCUMFLEX

(LIMA) LEFT INTERNAL MAMMARY ARTREY

(LM) LEFT MAIN

(LV) LEFT VENTRICLE

(MDCT) MULTIDETECTOR-ROW COMPUTED TOMOGRAPHY

(MICABG) MINIMALLY INVASIVE CORONARY ARTERY BYPASS

GRAFTING

(MPR) MULTIPLANAR REFORMATION