

Ain Shams University Faculty of Engineering

PROTOTYPE MODEL FOR POWER TRANSFORMER PROTECTION SYSTEM

By

Eng. NAFESA MAHMOUD OSMAN AHMED

B.Sc. (2002)

A Thesis

Submitted in Partial Fulfillment of the Requirements of the Degree of Master of Science in Electric Power Engineering

Under the supervision of:

Prof. Dr. ABDEL RAZAK NOSSEIR

Electric Power and Machines Department

Ain Shams University

Prof. Dr. ABLA S. ATTIA

Electric Power and Machines Department

Ain Shams University

Dr. FATHY M. TAHOON

Egyptian Electricity Holding Company

Cairo - 2010

APPROVAL SHEET

Prototype Model for Power Transformer Protection System

The Dissertation for The Master Degree in Electrical Power Engineering Presented by **Eng. NAFESA MAHMOUD OSMAN AHMED** Has Been Approved By:

	<u>Name</u>	<u>Signature</u>
1.	Prof. Dr. ABDEL RAZAK.NOSSEIR Electric Power and Machines Department Faculty of Engineering Ain Shams University	()
2.	Prof. Dr. ABLA S. ATTIA Electric Power and Machines Department Faculty of Engineering Ain Shams University	()
3.	Dr. FATHY M.TAHOON Egyptian Electricity Holding Company	()

Date: / / 2010

EXAMINERS COMMITTEE

1.	Prof. Dr. ABDEL RAZAK.NOSSEIR	()
	Electric Power and Machines Department Faculty of Engineering Ain Shams University	
2.	EL MOATAZ YOUSEF ABDEL AZIZ	()
	Electric Power and Machines Department Faculty of Engineering Ain Shams University	
3.	Dr. Nahed A. ABO HEGGI	()
	Egyptian Electricity Holding Company	

Date: / / 2010

ACKNOWLEDGMENTS

First and foremost, praise and thanks to Almighty Allah, the most Gracious, the Most Merciful, and peace be upon His Prophet.

I would like to express my deepest gratitude and appreciation to my supervisor Prof. Dr. Abdel Razak Nosseir, for his enthusiastic support and encouragement throughout that Dissertation.

I also greatly appreciate the help, valuable guidance, great support, faithful advice and unlimited efforts provided by Prof. Dr. Abla S. Attia.

I am grateful to my supervisor Dr. Fathy M. Tahoon, who gives me great support throughout all stages of my research.

I want to extend my thanks to all Engineers in the Extra High Voltage Research Center in Egyptian Electricity Holding Company for their beneficial help.

Finally, my deepest appreciation goes to my family for their unlimited, generous encouragement and support.

STATEMENT

This dissertation is submitted to Ain Shams University for the degree

of Master of Science in Electrical Power Engineering (Electrical Power and

Machines Department).

The included work in this thesis has been carried out by the author in the

Department of Electrical Power Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any

other university or institution.

Date : / /

Signature:

Name : NAFESA MAHMOUD OSMAN

Ain Shams University

Faculty of Engineering

Electric Power and Machines Department

Abstract of M.Sc. Thesis submitted by:

Eng. NAFESA MAHMOUD OSMAN AHMED

Title of the Thesis:

Prototype Model for Power Transformer Protection System

Supervisors:

- 1) Prof. Dr. Abdel Razak Nosseir
- 2) Prof. Dr. Abla S. Attia
- 3) Dr. Fathy M. Tahoon

Registration Date: / / 200 Examination Date: / / 2010

ABSTRACT

Transformers are one of the most important elements of power systems. Most transformers are equipped with protection systems to avoid damage to the transformers. As any outage of the transformer have several technical and economical consequences for the network, implementing fast relaying algorithms for transformer protection devices to satisfy high reliability of the whole power systems is very important.

In designing high speed protection systems, the fast discrimination of magnetizing inrush current is very crucial to prevent the false tripping of relays. Conventional method of inrush current detection for transformer protection is based on the value of the second harmonic component in the current waveform. However, this method requires a longer time to determine the second or higher harmonic components in transient current waveform, and cannot detect the inrush current within the one short cycle. Moreover, the second harmonic components in the magnetizing inrush currents tend to be relatively small in new designed power transformers due to improvements in the power transformer core material.

This thesis presents a new method to enhance the sensitivity of traditional techniques for power transformer protection. This method is based on the estimation of transformer magnetizing characteristic to distinguish between magnetizing inrush current and internal fault currents.

To validate the proposed method, a three phase power transformer of 250MVA, 400/132/18kV is modeled by alternative transient program (ATP) package. Simulation of inrush current at different switching instants and different internal fault cases are obtained. Results show the effectiveness of the proposed method.

In addition, this thesis includes experimental measurements which have been carried out using a mobile test laboratory. The lab was designed to meet all the requirements of real system under normal and abnormal conditions and latest measuring systems available in the Extra High Voltage Research Center-Egyptian Electricity Holding Company Experimental measurements are carried out on a three phase transformer of 25kVA, 11/0.4kV using the mobile test lab. Experimental measurements cover both transformer inrush current at different inception angles and different internal fault cases with different percentages of fault winding. Experimental results prove the reliability and simplicity of the proposed method.

Table of Contents

ABST	RACT		I
Table	of Conte	ents	Ш
List of	Tables		VI
		· · · · · · · · · · · · · · · · · · ·	
		s and Abbreviations	
		INTRODUCTION	
`	1.1.	General	
	1.2.	Thesis Objectives	
	1.3.	Thesis Outline	
(CHAI	PTER 2	2) A SHORT SURVEY ON FAULT DETECTION	
		NSFORMER	
	2.1.	General	
	2.2.	Methods of Modelling and Simulation of Power Transform	ner
	Inrush	Current and Faults in Addition to Methods for Controll	
		ng	_
	2.3.	Conventional Methods for Digital Differential Protection	in
	Power T	Fransformer	14
	2.4.	Advanced Methods to Improve the Sensitivity of Different	tial
	Protection	on	14
	2.5.	Modern Computer Methods Used for Digital Protection	of
	Power T	Fransformer Based on Wavelet Transformation and ANN	17
(CHAI	PTER	3) CONSTRUCTION AND PERFORMANCE	OF
TRAN	SFORM	IER AND TRANSFORMER PROTECTION	21
	3.1.	General	21
	3.2.	Transformer Construction	22
	3.2.1.	Magnetic Core	23
	3.2.2.	Transformer Windings	24
	3.2.3.	Tank and Other Parts	24
	3.3.	Methods of Cooling	25
	3.4.	Magnetizing Inrush Current	26
	3.5.	Magnetizing Inrush Current Types [3]	27
	3.5.1.	Inrush Due to Switching-in	
		ape, magnitude and duration of the inrush current depend	
	several f	factors:	30
	3.5.2.	Inrush during removal of a fault	32
	3.5.3.	Sympathetic inrush	33
	3.6.	Magnetizing inrush current harmonics	36
	3.7	Inrush In Three Phase Transformers	37

	3.8.	Transformer Faults	. 38
	3.8.1.	External Faults	. 38
	3.8.1.1.	Overloads	. 38
	3.8.1.2.	Overvoltage	. 39
	3.8.1.3.	Under frequency	. 39
	3.8.1.4.	External System Short Circuits	. 40
	3.8.2.	Internal Faults	. 40
	3.8.2.1.	Incipient Faults	. 40
	3.8.2.1.1	1.Overheating	. 41
	3.8.2.1.2	2.Overfluxing	41
	3.8.2.1.3	3.Overpressure	. 41
	3.8.2.2.	Active Faults	. 41
	3.8.2.2.1	1.Short Circuits in Wye-Connected Windings	.42
		2.Short circuits in delta-connected windings	
	3.8.2.2.3	3. Phase to Phase Short Circuits (in 3 phase transformer)	.42
	3.8.2.2.4	4.Turn- to- Turn Short Circuits	.42
	3.8.2.2.5	5.Core Faults	.43
	3.8.2.2.6	5.Tank Faults	.43
	3.8.2.2.7	7.Bushing Flashovers	.44
	3.9.	Transformer Protection	. 46
	3.9.1.	Safety Devices with power transformers	. 47
		Biased Differential Protection, Percentage Different	
	Protection	on of Power Transformer	. 48
	3.9.3.	Problems associated with differential protection applied	to
		mers	
	3.9.4.	Harmonic Restraint and Harmonic Blocking	. 53
	3.9.5.	Relay Solutions to Inrush Current Problem	. 54
	3.9.6.	Harmonic blocking	. 54
		4) PHYSICAL FUNDAMENTALS OF TRANSFORM	
MAGN	NETIZIN	NG CHARACTERISTICS ESTIMATION	
	4.1.	General	
	4.2.	Physical Fundamentals of the Transformer	. 57
	4.3.	Magnetizing Characteristics Estimation	. 61
(CHAI	PTER	5) TECHNIQUES OF COMPUTER CALCULATION	ON
PROG		AND SIMULATION RESULTS	. 65
	5.1.	General	
	5.2.	Power System Simulation Using ATP Program	
	5.2.1.	Modelling of the Power Sources	
	5.2.2.	Power Transformer Model	. 66
	5.2.3.	Load Representation	
	5.3.	Output Data from Simulation Study	
	5.4.	Power Systems under Study	. 68

5.4.	1. Configuration System
5.5.	•
5.6.	Simulation Results71
5.6.	
5.6.	
5.6.	2.1. Turn to Turn to Ground Fault74
5.6.	2.2. Turn to Turn Fault79
5.7.	Comments on the Results85
(CHAPTE	R 6) EXPERIMENTAL MEASUREMENTS86
6.1.	General86
6.2.	Background of mobile test laboratory86
6.3.	Mobile Test Laboratory Features
6.4.	Measuring Devices
6.4.	1. Voltage Measuring Devices
6.4.	2. Current Measuring Devices
6.5.	Numerical Integration91
6.6.	INRUSH CURRENT TEST PROCEDURE AND RESULTS. 93
6.7.	Internal Fault Test Procedure and Results
6.7.	1. Line to Line Fault
6.7.	2. Line to Line to Ground Fault
(CHAPTE	R 7) CONCLUSION 111
7.1.	General 111
7.2.	•
7.3.	PUBLICATIONS FROM THIS WORK, Two PAPERS
EN	ГІТLED113
7.4.	Future work 113
REFEREN	ICES 11/

List of Tables

Table 1: Harmonic Analysis of Magnetizing Current	37
Table 2: Causes of Transformer Failures	
Table 3: Power transformer protection	55
Table 4: Types of protection for power transformers	56

List of Figures

Figure 1: Two Main Core Types	23
Figure 2: Illustration of the magnetizing inrush	29
Figure 3: Typical inrush current	30
Figure 4: Conditions leading to the sympathetic inrush	34
Figure 5: Sample sympathetic inrush currents	35
Figure 6 : connection of CT secondaries on star side	49
Figure 7: connection of CT secondaries on delta side	50
Figure 8: Differential protection of delta-star transformer	51
Figure 9: Differential protection of star –star transformer	52
Figure 10: transformer B-H curve	58
Figure 11: typical shape of magnetizing current	61
Figure 12: a loop of a conducting material enclosing a magnetic field φ	62
Figure 13: B-H curve of the proposed method in case of inrush current	64
Figure 14: B-H curve of the proposed method in case of internal fault	64
Figure 15: the model for power transformer	67
Figure 16: Configuration of studied power system	69
Figure 17: connection diagram for simulating internal faults on power system	71
Figure 18: Waveforms of primary voltage, inrush current, and the locus of the	
proposed method when switching at 0sec	72
Figure 19: Waveforms of primary voltage, inrush current, and the locus of the	
proposed method when switching at 5msec	72
Figure 20: Waveforms of primary voltage, inrush current, and the locus of the	
proposed method when switching at 0.01sec	73
Figure 21: Waveforms of primary voltage, inrush current, and the locus of the	
proposed method when switching at 0.015sec	73
Figure 22: Waveforms of primary voltage, inrush current, and the locus of the	
proposed method when switching at 0.02sec	74
Figure 23: Waveforms of primary voltage, primary current, and the locus of the	
proposed method when an internal fault (turn to turn to ground) on 5% of the	
phase A winding	75
Figure 24: Waveforms of primary voltage, primary current, and the locus of the	
proposed method when an internal fault (turn to turn to ground) on 10% of the	
phase A winding	76

Figure 25: Waveforms of primary voltage, primary current, and the locus of the
proposed method when an internal fault (turn to turn to ground) on 15% of the
phase A winding76
Figure 26: Waveforms of primary voltage, primary current, and the locus of the
proposed method when an internal fault (turn to turn to ground) on 5% of the
phase B winding77
Figure 27: Waveforms of primary voltage, primary current, and the locus of the
proposed method when an internal fault (turn to turn to ground) on 10% of the
phase B winding77
Figure 28: Waveforms of primary voltage, primary current, and the locus of the
proposed method when an internal fault (turn to turn to ground) on 15% of the
phase B winding
Figure 29: Waveforms of primary voltage, primary current, and the locus of the
proposed method when an internal fault (turn to turn to ground) on 5% of the
phase C winding
Figure 30: Waveforms of primary voltage, primary current, and the locus of the
proposed method when an internal fault (turn to turn to ground) on 10% of the
phase C winding79
Figure 31: Waveforms of primary voltage, primary current, and the locus of the
proposed method when an internal fault (turn to turn to ground) on 15% of the
phase C winding79
Figure 32: Waveforms of primary voltage, primary current, and the locus of the
proposed method when an internal fault (turn to turn) on 5% of the phase A
winding80
Figure 33: Waveforms of primary voltage, primary current, and the locus of the
proposed method when an internal fault (turn to turn) on 10% of the phase A
winding
Figure 34: Waveforms of primary voltage, primary current, and the locus of the
proposed method when an internal fault (turn to turn) on 15% of the phase A
winding
Figure 35: Waveforms of primary voltage, primary current, and the locus of the
proposed method when an internal fault (turn to turn) on 5% of the phase B
winding82
Figure 36: Waveforms of primary voltage, primary current, and the locus of the
proposed method when an internal fault (turn to turn) on 10% of the phase B
winding 82

Figure 37: Waveforms of primary voltage, primary current, and the locus of the	
proposed method when an internal fault (turn to turn) on 15% of the phase B	
winding	83
Figure 38: Waveforms of primary voltage, primary current, and the locus of the	
proposed method when an internal fault (turn to turn) on 5% of the phase C	
winding	83
Figure 39: waveforms of primary voltage, primary current, and the locus of the	
proposed method when an internal fault (turn to turn) on 10% of the phase C	
winding	84
Figure 40: Waveforms of primary voltage, primary current, and the locus of the	
proposed method when an internal fault (turn to turn) on 15% of the phase C	
winding	84
Figure 41: Waveforms of primary voltage, primary current, and the locus of the	
proposed method when an internal fault (turn to turn) on 10% of the phase A	
winding	85
Figure 42: (a) Mobile Laboratory, (b) Sequence control unit, (c) Receiving unit,	
(d) Computer unit and printing	
Figure 43: The Integral Curve	92
Figure 44: Waveforms of primary voltage, inrush current, and the locus of the	
proposed method when switching at 0 degree	95
Figure 45: Waveforms of primary voltage, inrush current, and the locus of the	
proposed method when switching at 45 degree	
Figure 46: Waveforms of primary voltage, inrush current, and the locus of the	
proposed method when switching at 60 degree	
Figure 47: waveforms of primary voltage, inrush current, and the locus of the	
proposed method when switching at 90 degree	98
Figure 48: waveforms of primary voltage, inrush current, and the locus of the	
proposed method when switching at 180 degree	
Figure 49: Waveforms of 3phase primary voltages, 3 phase primary currents and	
the locus of the proposed method when line to line short circuit occurs between	
phases S &T on 25% of turns	02
Figure 50: Waveforms of 3phase primary voltages, 3 phase primary currents and	
the locus of the proposed method when line to line short circuit occurs between	
phases S &T on 50% of turn	03