تأثير الحقن العضلى لعقار الديكساميثازون على خلى زمن تحريض الولادة

رسالة بحثية توطئة للحصول على درجة الماجستير في أمراض النساء والتوليد

مقدمة من الطبيبة / وفاء أحمد عبدالسلام بكالوريوس الطب والجراحة جامعة بنى سويف (٢٠٠٥) طبيب مقيم النساء والتوليد بمستشفى الواسطى المركزي

تحت إشراف

الأستاذ الدكتور / مها محمد مسعد أستاذ أمراض النساء والتوليد كلية الطب (قصر العيني)- جامعة القاهرة

الدكتورة / مريم محمود عبد النبي مدرس أمراض النساء والتوليد كلية الطب (قصر العيني)- جامعة القاهرة

كلية الطب ـ جامعة القاهرة

(۲.15)

EFFECT OF INTRAMUSCULAR ADMINISTRATION OF DEXAMETHASONE ON THE DURATION OF LABOR INDUCTION

Thesis

Submitted for Partial Fulfillment of Master Degree in Obstetrics and Gynaecology ${\it By}$

Wafaa Ahmed Abdelsalam M.B., B. Ch

Benisuif University (2005)

Resident in Elwasta Central Hospital

Under Supervision of

Prof. Dr. Maha Mohamed Mosaad

Professor of Obstetrics and Gynaecology Faculty of Medicine - Cairo University

Dr. Mariam Mahmoud Abdelnabi

Lecturer of Obstetrics and Gynaecology Faculty of Medicine - Cairo University

> Faculty of Medicine Cairo University 2014

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks and gratitude to

Prof. Dr. Maha Mohamed Mosad, Professor of Obstetrics and Gynaecology for her supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Mariam Mahmoud Abdelnabi**, Lecturer of Obstetrics and Gynaecology for her sincere efforts and fruitful encouragement.

Wafaa Ahmed Abdelsalam

List of Contents

Title	Page No.
Aim of the Work	1
 Review of Literature 	
■ Parturition	2
■ Induction of Labor	26
■ Postdate	39
 Glucocorticoids and Human Parturition 	ı 45
Subjects and Methods	55
Results	62
 Discussion 	73
Summary and Conclusion	78
■ Recommendation	80
■ Abstract	81
■ References	82
 Arabic Summary. 	

List of Tables

Table No.	Title Page No.		
Table (1):	Bishop Scoring System Used for Assessment of Inducibility		
Table (2):	Traditional Definitions of Abnormal Labor20		
Table (3):	Factors that may affect fetal oxygenation in labor 42		
Table (4):	Duration of action for Glucocorticoid analogues45		
Table (5):	Statistical comparison between the two studied groups		
age, BMIand gestational age on admission date63			
Table (6): Statistical comparison between the two studied groups			
as regard pulse and blood pressure64			
Table (7): Statistical comparison between the two studied groups			
	as regard Bishop Score at time of intervention65		
Table (8): 8	Statistical comparison between the two studied		
	groups as regard duration between induction of labor		
	and active phase67-		
Table (9):	Statistical comparison between the two studied		
Ş	groups as regards duration of active phase of labor68		
Table (10): Statistical comparison between the two studied			
	groups as regards rate of cervical dilatation69		
Table (11):	Statistical comparison between the two studied		
	groups as regards duration of 2 nd stage of labor70		
Table (12):	Statistical comparison between the two studied		
	groups as regards duration of 3rd stage of labor71		
Table (13):	Statistical comparison between the two studied		
groups as regards mode of delivery and its indication72			
Table (14):	Statistical comparison between the two studied		
	groups as regards apgar score72		

List of Figures

Fig.	No.	Title	Page No.	
Fig.	(1):	Maternal–Fetal Interactions	5	
Fig.	Fig. (2,3,4,5): Mechanism of effacement, dilation			
Fig.	(6):	Mechanism of effacement and dilation	_	
Fig. (7):Composite of the average dilatation curve for nulliparous labor.				
Fig.	(8):	Modified WHO curve		
Fig.	(9):	Algorithm for management of low risk pregnancy beyond		
		40w of gestation 40		
Fig.	(10) :T	he placental–fetal adrenal endocrine ca	ascade 48	
Fig.	(11):	Maternal and Fetal Endocrine Syste Increased Placental Production of CRI		
Fig.	(12):	Mean age, BMI and gestational age in dexamethasone		
		group and control group	63	
Fig.	(13):	Mean pulse, systolic BP and di dexamethasone group and control group		
Fig. (14):Mean bishop score in dexamethasone group and control group 66				
Fig.	(15):	Mean Duration between induction of laphase (hrs) in dexamethasone group.	ip and control	
Fig.	(16):	Mean Duration of active phase of dexamethasone group and control group		
Fig.	(17):	Mean rate of cervical dilatatio dexamethasone group and control group		
Fig.	(18):	Mean duration of 2nd stage of labor dexamethasone group and control group		
Fig.	(19):	Mean duration of 3rd stage of labor dexamethasone group and control group		

List of Abbreviations

11ß-HSD1 11ß-Hydroxy steroid dehydrogenase type1

ACOG American College of Obstetricians and Gynecologists

ACTH Adrenocorticotrophic hormone

AFI Amniotic fluid index

ATP Adenosine triphosphate

BMI Body mass index
BP Blood pressure
BPM Beats per minute
BPP Biophysical profile
C/S Cesarean Section

c-AMP Cyclic adenosine monophosphate

cc Cubic centimeters
COX-2 Cyclooxygenase 2

cPLA2 Cytosolic phospholipase A2

CRH Corticotrophin Releasing Hormone

CRH-BP CRH-binding protein

CSF Colony-stimulating factor

CST Contraction stress test

cyclic AMP Cyclic adenosine monophosphate

CYP17- CYP11A Cytochrome enzyme (p17-p11A)

DHEAS Dehydro epiandrosterone sulfate

DZ Definitive zone

EASI Extra-Amniotic Saline Infusion

EDD Expected delivery date

EFM Electronic fetal heart rate monitoring

Eg Example

fFN Fetal Fibronectin
FHR Fetal heart rate

HFA Human fetal adrenal

HSD3B2 3-hydroxysteroid dehydrogenase type II

IGFBP-1 Insulin-Like Growth Factor Binding Protein-1

IL-8 Interleukin -8

LMP Last menstrual period

m2 meters square

M-CSF Macrophage stimulating factor

MMPs Metallo proteinases

mRNA Messenger Ribonucleic Acid

NA Not applicable.

NO Nitric oxide

NST Non stress test

PGDH 15-hydroxy prostaglandin dehydrogenase

PGE2-PGF2 Prostaglandin

PGHS Prostaglandin endoperoxide H synthase enzyme

PGHS-2 Prostaglandin synthesis

PGs Prostaglandins

RCOG Royal Colleague of Obstetrics and Gynecology

SVD Spontaneous vaginal delivery

TNF Tumor necrosis factor

TZ Transitional zone

WHO World Health Organization

AIM OF THE WORK

The aim of this work is to evaluate the effect of intramuscular administration of dexamethasone on the progress and duration of phases of vaginal delivery during labor induction.

PARTURITION

The last few hours of human pregnancy are characterized by uterine contractions that effect cervical dilatation and cause the fetus to descend through the birth canal. These forceful, painful contractions are preceded by extensive preparations in both the uterus and cervix. During the first 36 to 38 weeks of normal gestation, the myometrium is in a preparatory yet unresponsive state. Concurrently, the cervix begins an early stage of remodeling termed softening, yet maintains structural integrity. Following this prolonged uterine quiescence, there is a transitional phase during which myometrial unresponsiveness is suspended, and the cervix undergoes ripening, effacement, and loss of structural integrity (Cunningham et al., 2010).

The physiological processes that regulate parturition and the onset of labor continue to be defined. It is clear, however, that labor onset represents the culmination of a series of biochemical changes in the uterus and cervix. These result from endocrine and paracrine signals emanating from both mother and fetus. Their relative contributions vary between species, and it is these differences that complicate elucidation of the exact factors that regulate human parturition (**Cunningham et al.**, **2010**).

Theories of the causes of labor

The exact mechanism, by which labor is started spontaneously, at either term or preterm, is unknown. Many theories have been proposed.

A- Oxytocin stimulation:

Endogenously produced oxytocin, which causes uterine contractions, may play a role in the spontaneous onset of labor. Levels of oxytocin in maternal blood in early labor are higher than before the onset of labor, but there is no evidence of a sudden surge. Oxytocin influence

must therefore rely on the presence of oxytocin receptors .Receptors are found in the nonpregnant uterus.

There is a six fold increase in receptors at 13 to 17 weeks' gestation and an 80-fold increase at term. The increased number of oxytocin receptors amplifies the biologic effect of oxytocin, and contractions intensity(**YU-HSIN**, **2012**)...

B- Fetal cortisol levels:

Fetal cortisol levels may influence the spontaneous onset of labor. Disruption of hypothalamic–pituitary–adrenal axis or the absence of adrenal gland or function results in prolonged gestation in humans and sheep. In sheep, infusion of cortisol or ACTH into a fetus with an intact adrenal gland causes premature labor .However, in humans, there has been no documentation of prelabor surge in fetal cortisol secretion to completely support this theory(**YU-HSIN**, **2012**).

C- Progesterone withdrawal:

In rabbits, the withdrawal of progesterone is followed by the prompt evacuation of the contents. In humans, there is no obvious decrease in maternal blood levels of progesterone at term or in labor. However, the progesterone level at the placental site may decrease before the onset of labor. This decrease in progesterone, in association with increased estrogen levels, is followed by increased formation of gap junctions, which permit coupling of the myometrial cells(**YU-HSIN**, **2012**)..

D- Prostaglandin release:

Prostaglandins, particularly PGF 2(alpha) and PGE2, have long been believed to be involved in the spontaneous onset of labor. The normal processes of labor appear to result in inflammation, which results in increased prostaglandin synthesis. Prostaglandins produced in

myometrial tissue may contribute to the effectiveness of myometrial contractions during labor, and may soften the cervix independent of uterine activity (YU-HSIN, 2012).

Maternal-fetal interactions

In the intervillous space, the syncytiotrophoblasts release corticotropin-releasing hormone (CRH), progesterone, and estrogens into the maternal blood and into the fetal blood. Cortisol passes through a maternal artery and enters the intervillous space, where it stimulates the production of CRH by the syncytiotrophoblasts. A fetal umbilical vein carries CRH into the fetal circulation, stimulating the fetal pituitary to synthesize corticotrophin and drive fetal adrenal cortisol dehydroepiandrosterone sulfate (DHEAS) synthesis. Cortisol and CRH stimulate the fetal lungs to produce surfactant protein A, which moves from the amniotic fluid to the amnion, where it stimulates the production of cyclooxygenase 2 (COX-2) and the synthesis of prostaglandin E2. They pass along the chorion and decidua and stimulate the underlying maternal myometrial cells to synthesize additional COX-2 and prostaglandin F2α (Smith, 2007).

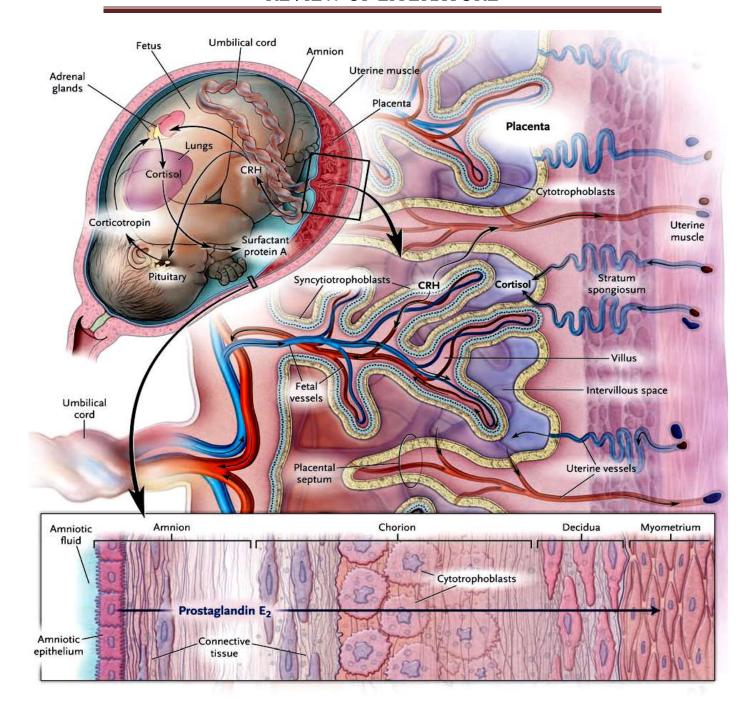


Fig. (1): Maternal-Fetal Interactions (Smith, 2007).

Cervical changes during prelabor and labor

The normal human cervix in the nullipara is about 2.5 cm to 3 cm in length, 2 cm to 2.5 cm in its anteroposterior diameter and 2.5 cm to 3 cm in its lateral diameter. This difference is due to the shape of the cervical canal, which is straight in the sagital plane and spindle shaped in the frontal plane. The wall of the cervix is about 1 cm thick throughout its length (**Danforth**, 1983).

During pregnancy, the length of the cervix remains relatively unchanged but it varies in width by about 1 to 2 cm. The external os usually remains firmly closed up to the 15th week of pregnancy. From the 15th to 20th week it dilates in 30% of primigravidas and in 39% of multigravida. In the subsequent course of pregnancy, the external os dilates in a further number of women (**McInnes et al., 1980**).

The internal os does not remain closed up to the full term pregnancy, it shows little dilatation from the 24th to the 28th week of pregnancy (McInnes et al., 1980).

The process of connective tissue remodeling in the cervix during pregnancy occurs in four stages: softening, ripening, dilation, and repair. Although overlapping in time, each stage is uniquely regulated (**Word et al., 2007**).

Although the cervix contains a small amount of smooth muscle, its major component is connective tissue. Rearrangement of this collagenrich connective tissue is necessary to permit functions as diverse as maintenance of a pregnancy to term, dilatation to facilitate delivery, and repair following parturition so that a successful pregnancy can be repeated (**Ludmir and Sehdev**, **2000**).

Throughout pregnancy, collagen is actively synthesized. It is also continuously remodeled by collagenase, secreted from both cervical cells and neutrophils in an apparently slow and precise fashion. Collagen is degraded by collagenase both intracellularly, to remove structurally defective procollagen to prevent the formation of weak structural collagen, and extracellularly, to slowly weaken (so-called softening or ripening) the collagen matrix to allow delivery of the pregnancy(**Phyllis** and Leppert., 1995).

As gestation advances, degradation and extraction of collagen from cervical tissue (a phenomenon not observed in non-pregnant state), by collagenase (now called matrix metalloproteinases) helps to maintain balance between newly synthesized collagen thus regulating total collagen concentration in the cervix (**Phyllis and Leppert.**, 1995).

Cervical changes During Labor:

Dilatation and effacement of the cervix during labor are not only a result of uterine contraction, but are also dependent upon ripening processes within the cervix (**Nuutila et al., 1999**).

The laboring cervix is histologically marked by the presence of neutrophils, and they account for a further significant increase in the level of protease found in the cervix and serum (Osmers et al., 1992).

Word et al., (2007), indicated that cervical ripening precedes myometrial contractions of labor by several weeks as evidenced by serial measurement of cervical length and this suggests that parturition in women is a process of long duration and that uterine contraction of labor are late events in parturition process.

Before the onset of labor the cervix become softer which facilitate dilation of the cervix once forceful myomtrial contraction of labor begin.