Study of Necrotizing Enterocolitis in Neonatal Intensive Care Unit of Cairo University Pediatric Hospital

Thesis

Submitted for Fulfillment of Master. Degree(M.Sc.) in Pediatrics

By
Tarek Rashad Abdalla Masoud
(M.B.B.Ch.)
Cairo University

Supervisors

Prof. Dr. Laila Hussein Mohamed Hussein
Professor of Pediatrics
Faculty of Medicine
Cairo University

Dr. Mai Ahmed Khairy
Assistant Professor of Pediatrics
Faculty of Medicine
Cairo University

Dr. Nermen Ramy Mohamed

Lecturer of Pediatrics

Faculty of Medicine

Cairo University

Faculty of Medicine - Cairo University 2010

بسم الله الرحمن الرحيم

(قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم)

صدق الله العظيم

(سورة البقرة، آية ٣٢)

Abstract

Necrtizing Enterocolitis(NEC) is a common gastrointestinal emergency. Prematurity is major risk factor. Pathogenesis is poorly understood but appears to be multi factorial. NEC is suspected clinically and confirmed by laboratory and radiological studies. Management of NEC is medical and surgical. Prevention and treatment have priority of reseach due to increased number of preterm survival at risk and high mortality and morbidity.

Key words:

Necrotizing Enterocolitis – Prematurity.

ACKNOWLEDGEMENT

First and foremost thanks and praise Allah, most gracious, most merciful by whose abundant grace, this work has come to life.

I would like to express my deep everlasting gratitude, thanks and respect to our eminent **Prof. Dr. Laila Hussein**Mohamed Hussein, professor of pediatrics, Faculty of Medicine, Cairo University for granting me the privilege of work under her supervision, kind help, indispensable advice and encouragement from the start of this work.

I would like to express my deep appreciation to **Dr. Mai Ahmed Khairy**, assistant professor of pediatrics, Faculty of Medicine, Cairo University for her great help, careful supervision and her continuous guidance to perform this work.

I would like to express my deep appreciation to **Dr. Nermin Rami Mohamed**, lecture of pediatrics, Faculty of Medicine, Cairo University for her great support and valuable advice to perform this work.

Special thanks is given to **Dr. Nagy El Hussiny**, fellow of pediatrics, Ahmed Maher Teaching Hospital, for his valuable cooperation to fulfill this work.

I am very grateful to all staff members of NICU in, Cairo University – Pediatrics Hospital. Faculty of Medicine

I would like to express my warm gratitude to my parents and members of my family for their kindness and unfailing support and much needed encouragement.

CONTENTS

List of Tables I
List of FiguresII
List of AbbreviationsIV
IntroductionVII
Aim of WorkXI
Review of literature1
Physiology of Gastrointestinal System
Epidemiology of Necrotizing Enterocolitis4
Pathophysiology of Necrotizing Enterocolitis12
Pathology of Necrotizing Enterocolitis34
Diagnosis of Necrotizing Enterocolitis39
Management of Necrotizing Enterocolitis55
Prevention of Necrotizing Enterocolitis62
Patients and Method71
Results
Discussion
Summary
Conclusion
Recommendations101
Appendix102
References117
Arabic SummaryI

List of Tables

No		Title					
Table	(1):	Bell's Staging For NEC	40				
Table	(2):	Modified Bell Stages	41				
Table	(3):	Potential Preventive Strategies	62				
Table	(4):	Probiotics are Thought To Prevent NEC Through The Following Mechanisms	67				
Table	(5):	Distribution Of Recorded Cases Of NEC According To Modified Bell's Stages					
Table	(6):	Distribution Of Recorded Cases Of NEC According To Their Gestational Age And Weight	74				
Table	(7):	Distribution Of Recorded Cases Of NEC Regarding Risk Factors Related to Mother and Labor	76				
Table	(8):	Distribution Of Recorded Cases Of NEC According to Risk Factors Related to Patient	76				
Table	(9):	Distribution Of Recorded Cases Of NEC According To Feeding Regimen Of Patients	77				
Table	(10):	Distribution Of Recorded Cases Of NEC In Relation To Age Of Onset Of The Disease	78				
Table	(11):	Frequency (%) Of Different Clinical Presentation Of The Recorded Cases Of NEC Arranged In Descending Manner	79				
Table	(12):	Frequency (%) Of Different Laboratory Findings Of Recorded Cases Of NEC	80				
Table	(13):	Distribution Of Recorded Cases Of NEC In Relation To Results Of Septic Workup	81				
Table	(14):	Radiological Findings of Recorded Cases Of NEC	81				
Table	(15):	Distribution Of Recorded Cases Of NEC According to Type Of Medical Management	82				
Table	(16):	Distribution Of Recorded Cases Of NEC According To Type Of Transfusion Therapy	83				
Table	(17):	Distribution Of Recorded Cases Of NEC Regarding Their Outcome	83				

List of Figures

No		Title			
Figure	(1):	NEC Pathophysiology	12		
Figure	(2):	Immature Intestinal Barrier Function	16		
Figure	(3):	Abnormal Bacterial Colonization	21		
Figure	(4):	NF- _K B signaling Pathway in Intestinal Epithelial Ce	23		
Figure	(5):	Immature Intestinal Innate Immunity	25		
Figure	(6):	Possible Genetic Predispositions	30		
Figure	(7):	Abdominal Distension & Abdominal Wall Erythema, in a Neonate with NEC	36		
Figure	(8):	Necrosis of Rt Colon & Ileum From A Neonate With NEC	36		
Figure	(9):	Gross Pneumatosis Intestinalis In A Neonate With NEC. GI Narrowing Is Also Seen	37		
Figure	(10):	Microscopic Images of (A) Normal Bowel and (B) Hemorrhagic Necrosis, Beginning in the Mucosa and Extending to the Muscular Bowel Wall	37		
Figure	(11):	Microscopic Appearance of the Small Intestine From An Infant With Necrotizing Enterocolitis	38		
Figure	(12):	Cross-Table Lateral Abdominal Radiograph Of A Neonate With Clinically Severe NEC	47		
Figure	(13):	Supine Abdominal Radiograph Of A Neonate With NEC Shows Dilatation Of The Bowel	48		
Figure	(14):	Plain Abdominal Radiograph of Newnate with NEC Shows Portal Venous Gas	49		
Figure	(15):	Plain Abdominal Radiograph Of Neonate with NEC Shows Free Intraperitoneal Gas	50		
Figure	(16):	Ultrasonography Of Neonate With NEC Reveals Dense Granular Echogenicities in Bowel Wall	51		

LIST OF FIGURES

N	0	Title				Page
Figure	(17):	00	Management		J	56
Figure	(18):	Distribution Of Recorded Cases of NEC According To Their Gestational Weight				
Figure	(19):		Of Recorded Case nset Of The Diseas			78
Figure	(20):		Of Recorded Case			83

List of Abbreviations

AP : Anteroposterior

aPTT : Activated Partial Thromboplastin Time

CS : Cesarean section

CD14 : Cluster Of Differentiation 14

CPAP : Continuous positive airway pressure

CPS : Carbamoyl Phosphate Synthetase

CONS : Coagulase-negative Staphylococcus

CRP : C-Reactive Protein

CSF : Cerebrospinal fluid

DIC : Disseminated Intravascular Coagulation

EGF : Epidermal Growth Factor

IκB : Inhibitor Of Kappa-Light-Chain-Enhancer Of

Activated B Cells

GI : Gastro-Intestinal

IFABP : Intestinal Fatty Acid Binding Protein

IVIG : Intravenous Immunoglobulin

IL : Interleukins

LBW : Low Birth Weight

L-FABP : Liver Fatty Acid Binding Protein

LPS : Lipopolysaccharide

MAMPs : Microbial- Associated Molecular Patterns

NEC : Necrotizing Enterocolitis

NO : Nitric Oxide

ABBREVIATION

NOD2 : Nucleotide-Binding Oligomerization Domain

Containing 2

NF-кВ : Nuclear Factor Kappa-Light-Chain-Enhancer Of

Activated B Cell

NG : Naso Gastric

NICU : Neonatal Intensive Care Unite

NOS : Nitric Oxide Synthetase

NPO : Nothing By Mouth

NSAID : Non Steroidal Anti Inflammatory Drugs

PAF : Platelet activating factor

PDA : Patent Ductus Areteriosus

PRR : Pattern Recognition Receptor

PT : Prothrombin Time

PAF-AH : Platelet Activating Factor Acetyl Hydrolase

RDS : Respiratory Distress Syndrome

RLQ : Right Lower Quadrant

SIMV : Synchronized Intermittent Mechanical Ventilation

SGA : Small For Gestational Age

SNPs : Single Nucleotide Polymorphisms

TJs : Tight Junctions

TLR : Toll-Like Receptor

TNF : Tumor Necrosis Factor

Tpo : Thrombopoietin

TPN : Total Parental Nutrition

UAC : Umbilical Artery Catheters

ABBREVIATION

UVC : Umbilical Venous Catheter

VLBW : Very low birth weight

VEGF : Vascular Endothelial Growth Factor

MENTAL CLOP

Introduction

Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in the preterm infant. Necrotizing enterocolitis initially was described in case reports of Gastro-Intestinal (GI) perforations as early as 1825 (Hughes et al., 2009).

NEC affects 5–15% of all infants born at less than 30 weeks gestational age or <1500 g birth weight. However, up to 10% of all neonates who develop NEC are born at term (Giannone et al.,2008).

Premature infants are at high risk for NEC because of developmental immaturity of key functions in particular gastrointestinal motility, digestive ability, circulatory regulation intestinal barrier function. Preterm infants also have immature mucin expression by goblet cells and decreased paneth cell number (*Lin and Stoll, 2006*).

The risk of NEC in neonates with congenital heart disease is substantial. Factors associated with an elevated risk of NEC in infants with heart disease include premature birth, hypo plastic left heart syndrome, truncus arteriosus, and episodes of poor systemic perfusion or shock. (McElhinney et al., 2000).

Newborn infants of mothers with pregnancy-induced hypertension present with intrauterine growth retardation, prematurity, dysmaturity and necrotizing enterocolitis *(Grujić and Milasinović, 2006)*.

Impairment of mesenteric blood flow due to the use of umbilical artery catheters (UAC) may increase the risk of necrotizing enterocolitis (NEC) in newborn infants. (Rand et al.; 1996).

H2-blocker therapy was associated with higher rates of NEC due to decrease the already low acid output of stomach (Guillet et al.; 2006).

The pathogenesis of necrotizing enterocolitis (NEC) is poorly understood, but appears to be multi-factorial and highly associated with immaturity of the gastrointestinal tract, colonization of the intestinal microbiota, and immature innate immune system (*Neu*, 2005).

An episode of ischemia can be an initiating event followed by a complex cascade of inflammatory mediators active in NEC: epidermal growth factor, platelet-activating factor, and nitric oxide (*Henry and Moss, 2004*).

More recently, the pattern of bacterial colonization has been given emphasis rather than the particular species or strain of bacteria or their virulence. Gram-negative bacteria that form part of the normal flora are now speculated as important factors in triggering the injury process in a setting where there is a severe paucity of bacterial species and possible lack of protective Gram-positive organisms (*Panigrahi*, 2006).

Studies have shown genetic polymorphisms associated with predisposition to the development and severity of NEC *(Harding, 2007).*

Neonates commonly present with feeding intolerance, delayed gastric emptying, abdominal distension or tenderness (or both). Occult or gross blood

in the stool, lethargy, apnea, respiratory distress, or poor perfusion may also occur. Infants might either have a benign disease with mainly gastrointestinal symptoms or a catastrophic illness characterized by sudden fulminate onset with circulatory compromise, respiratory and metabolic acidosis, DIC, grossly bloody stool and multiorgan system failure and in severe cases of diseases, there is intestinal perforation, peritonitis, and profound shock (*Lin and Stoll*, 2006).

The diagnosis is suspected from clinical presentation but must be confirmed by diagnostic radiograph surgery or autopsy. No laboratory tests are specific for NEC. Thrombocytopenia, persistence metabolic acidosis and severe refractory hyponatremia are the most common triad of signs that help to confirm diagnosis *(Eichenwald, 2008)*.

Treatment options are limited to gut rest, parenteral nutrition, broadspectrum antibiotics, and surgical interventions for enteral perforation. Two commonly used methods for NEC with intestinal perforation are laparotomy or primary peritoneal drainage (*Yurdakok, 2008*).

Probiotic supplementation appears to be a promising option for primary prevention of NEC but further large trials are necessary for documenting their safety in terms of sepsis as well as long-term neurodevelopment outcomes and immune function. The impact of well-established simple strategies like antenatal glucocorticoid therapy, and early use of breast milk must not be forgotten (*Patole*, 2007).