Study of Platelet and Endothelial Microparticles in Patients with Type 2 **Diabetes Mellitus**

THESIS

Submitted in partial fulfillment

For M.Sc. Degree

"Clinical and Chemical Pathology Department"

BY

Alaa Amr Gad

M.B.B.Ch

SUPERVISED BY

Prof. Dr. Azza Mostafa Prof. Dr. Eman Mansour

Professor of Clinical Pathology Professor of Clinical Pathology

Faculty of Medicine

Faculty of Medicine

Cairo University

Cairo University

Prof.Dr.Ibrahim El Abrashy

Professor of Internal Medicine

Faculty of Medicine

Cairo University

2010

إِنَّكُ أَنْهُ الْعَلِيمُ الْمَكِيمُ

البهرة (32)

ACKNOWLEDGEMENT

In the Name of Allah, the Beneficent, the Merciful

First praise is to **Allah**, the Almighty, on whom ultimately we depend for sustenance and guidance.

I especially want to thank **Dr Azza Mostafa**, Professor of clinical pathology, Faculty of Medicine, Cairo university for her guidance during my study, Her perpetual energy, enthusiasm and paramount mentorship in research had motivated all her advisees, including me.

I would like to express my deepest sense of gratitude to **Dr. Eman Mansour**, Professor of clinical pathology, Faculty of medicine, Cairo university for her patient guidance, encouragement and excellent advice throughout this study. It's been a privilege to work under her supervision.

I greatly acknowledge **Dr. Ibrahim El Ebrashy**, Professor of Internal medicine, Faculty of medicine, Cairo University, for his advice and crucial contribution which made him the backbone of this thesis.

My sincere appreciation goes to my supervisor **Dr. Hanan El Husseiny**, lecturer of clinical pathology, Faculty of medicine, Cairo university whose guidance, careful reading and constructive comments were valuable. Her timely and efficient contribution helped me shape this into its final form.

Words are not enough to express my gratitude to **Dr. Eman William**, Assistant professor of haematology, Theodor Bilharz research Institute whose cooperation and great effort in the practical part of thesis had helped me throughout my study.

I owe my most sincere gratitude to **my family** for their unconditional love and support throughout my life; this dissertation is simply impossible without them, I have no suitable word that can fully describe my everlasting love to them.

And last but not the least, I would like to thanks all my **friends** and **colleagues** who supported me and gave me confidence.

TABLE OF CONTENT

I- Introduction and aim of work	1
II- Review of literature	4
Chapter 1: Microparticles	
*Plasma membrane remodeling and microparticle formation	6
*Structure of cellular microparticles	10
*Cellular origin of microparticles:	
a -Platelet derived microparticles	13
b -Endothelial derived microparticles	14
i- EMP in healthy conditions	14
ii- Characterization	15
iii- Generation and release	16
c-Leucocyte derived microparticles	18
i- Monocyte derived microparticles	18
ii- Polymorphonuclear derived microparticles	19
d-Erythrocyte derived microparticles	19
*Membrane microparticles in intercellular communication	21
*Biological effects of microparticles:	
a -Microparticles and thrombus formation	24
b -Microparticles and inflammation	26
c-Microparticles and vascular formation	28
d-Microparticles and angiogenesis	31

microparticles.	
a-Microparticles in systemic disease	35
b-Microparticles in cardiovascular disease	35
i - Deep vein thrombosis and pulmonary embolism	36
ii – Stroke	37
iii-Peripheral vascular disease	37
iv-Coronary artery syndrome	37
c-Microparticles in sickle cell disease	38
d-Microparticles in sepsis	39
f-Microparticles in thrombotic thrombocytopenic purpura	42
g-Microparticles in paroxysmal nocturnal haemoglobinuria	42
<u>Chapter 2</u> : Diabetes Mellitus *Definition and Description of Diabetes Mellitus	43
*Classification of Diabetes Mellitus	
a-Type 1 diabetes	47
b-Type 2 diabetes	49
c-Other specific types of diabetes	51
i-Genetic defect of the B cell	51
ii-Genetic defect in insulin action	51
iii-Diseases of the exocrine pancreas	51
iv-Endocrinopathies	52
v-Drug or chemical induced diabetes	52

*Patho-physiologic significance of platelet and endothelial

*Vascular complication of Diabetes Mellitus	54
*Platelet activation and type 2 Diabetes	56
*Endothelial dysfunction and type 2 Diabetes	59
*MPs as markers in diabetes	61
*MPs :biological effectors in diabetes	63
*MPs and prevention of diabetic complications	66
III - Subjects and methods	67
IV – Results	79
V - Discussion	118
VI – Summary	131
VII- References	133
VI – Arabic summary	1

List of abbreviations

- APC: Activated Protein C
- AT-II : Angiotensin-II
- ATP : Adenosine Triphosphate
- BFGF: Basic Fibroblast Growth Factor
- CA2+: Calcium
- **CABG**: Coronary artery bypass graft
- CAD: Coronary Artery Disease
- **CD**: Cluster Of Differentiation
- CGMP: Cyclic guanosine monophosphate
- **COX**: Cyclooxgyenase
- CVD : Cardio Vascular Disease
- **DM**: Diabetes Mellitus
- **EGF**: Endothelial growth factor
- **ELISA**: Enzyme linked immunosorbant assay
- EMPs : Endothelial microparticles
- **EPC**: Endothelial progenitor cell
- **EPCR**: Endothelial protein C receptor
- ERK: Extracellular Regulated Kinase
- ET-1: Endothelin-1
- FAS: Fatty acid synthase
- FASL : FAS ligand
- GAD :Glutamate decarboxylase

• GDM: Gestational Diabetes Mellitus

• **GP**: Glycoprotein

• GPI: Gylcoprotein I

• HBA1c : Glycosylated hemoglobin

• **HDL**: High Density Lipoprotein

• HLA: Human Leucocytic Antigen

• ICAM : Intercellular adhesion molecule

• IDDM: Insulin Dependant Diabetes Mellitus

• **IFG**: Impaired Fasting Glucose

• IGT: Impaired Glucose Tolerance

• **ILs**: Interleukins

LASER: Light Amplification by Stimulated Emission of Radiation

• LDL: Low Density Lipoprotein

• LPS : Lipopolysaccaride

• MAC-1 : Macrophage -1 antigen

MDMP: Monocyte derived microparticles

• MHC: Major histocompitability complex

• Min : Minute

MMPs : Monocyte micoparticles

MODY: Maturity Onset Diabetes of the Young

MPs : Microparticles

 NFkB :Nuclear Factor Kappa-light-chain enhancer of activated B cells

• NO: Nitic oxide

• NOS : Nitric oxid synthase

• OGTT: Oral glucose tolerance test

• PAF : Platelet activated factor

PAR: Protease activated receptor

• **PDGF**: Platelet Derived Growth Factor

• PDMPs : Platelet derived microparticles

• **PE**: Phosphatidyl-ethanolamine

• PECAM: Platelet-endothelial cell adhesion molecule

• PF4: Platelet Factor 4

• PGI-2 : Prostacyclin

• **PI**: Phosphatidyl inositol

• **PI-3**: Phosphoinositide-3

• PL : Phospholipid

PLA2 : Phospholipase A2

PMA: Phorbol 12-myristate 13-acetate

• PMNs : Polymorphonuclear leucocyte

• PMPs : Platelet microparticles

• **PMT**: Photomultiplier

PNH: Paroxysmal Nocturnal Hemoglobinuria

• PPP: Platelet Poor Plasma

• PRP: Platelet Rich Plasma

• **PS**: Phosphatidylserine

• **PSGL**: P-selectin glycoprotein ligand

• Ptdsr : Phosphatidylserine receptor

• RANTES: Regulated upon Activation, Normal T cell Expressed and Secreted

• RhAPC: Recombinant human activated ptn C

• ROS: Reactive Oxygen Species

• RPM: Rotation Per Minute

• SCD : Sickle Cell Disease

• **T2DM**: Type 2 Diabetes Mellitus

• TACE: Tumor necrosis factor α converting enzyme

• **TF**: Tissue factor

• TNF: Tumor necrosis factor

• TTP: Thrombotic Thrombocytopenic Purpura

• TXA2 : Thromboxane A2

• VCAM: Vascular cell adhesion molecule

VEGF: Vascular Endothelial Growth Factor

• **vWF**: von Willebrand factor

List of Figures

Fig(1):Cellular MP: a disseminated storage pool of bioactive effectors5
Fig(2): Maintenance of the asymmetric distribution of phospholipids in the
membrane by a three piece enzyme system7
Fig(3):Microparticle formation9
Fig(4):Schematic representation of microparticle generation and
composition10
Fig(5):Formation of phenotypically heterogenous microparticles13
Fig(6):Paracrine effects of endothelial microparticles17
Fig(7):Platelet-Leucocyte-Endothelial Crosstalk23
Fig(8):Microparticles and atherosclerotic plaque progression27
Fig(9): Differential effects of microparticles on angiogenesis depending on
their origin33
fig(10): Microparticles evoked effects in the vascular system depending on
their cellular origin36
Fig(11):Role of circulating endothelial and PMN leucocyte derived
microparticles in sepsis40
Fig(12): Role of Endothelial-derived microparticles during sepsis41
Fig(13):Disorders of glycemia , etiologic types and stages45

Fig(14):MPs and their biological effects in diabetes65
Fig (15) :Flow cytometry results107
Fig (16):HbA1c level in the studied groups108
Fig (17) :Cholesterol level in the studied groups109
Fig(18):HDL level in the studied groups109
Fig (19):LDL level in the studied groups110
Fig (20) :Chol/HDL ratio in the studied groups110
Fig (21) : LDL/HDL levels in the studied groups111
Fig (22) : CD31+/CD42b+ in the studied groups112
Fig (23) : CD62P in the studied groups112
Fig (24) : CD31+/CD42b- in the studied groups113
Fig (25) : CD62E in the studied groups113
Fig (26) : CD62/CD31+,CD42- in the studied groups114
Fig (27): Correlation between CD62E and HbA1c115
Fig (28) : correlation between LDL and CD31+/CD42b116
Fig (29): Correlation between CD62P and CD62E117

List of tables

Table (1): Markers for cell-derived microparticles	20
Table (2): Effects of microparticles on the vascular tone	30
Table (3): Demographic data of the studied groups	89
Table (4): Clinical findings of the studied groups	89
Table (5): Hb, WBCs and Platelet count in the control groups	90
Table (6): Hb, WBCs and Platelet count in Group I	91
Table (7): Hb , WBCs and Platelet count in Group II	92
Table (8) : Fasting glucose level in the studied groups	9 3
Table (9) : Hb A1c levels in the studied groups	94
Table(10):The statistical comparative study of FBS and HbA1c	95
Table (11) : Lipid profile results of controls	96
Table (12) :Lipid profile in Group I	97
Table (13) : Lipid profile of Group II9	98
Table (14): The statistical comparative study of the lipid profile and hi	gh
risk ratio among the studied groups9) 9
Table(15):Platelet microparticles measured by CD42b + / CD 31+1	00

Table (16) :Platelet microparticles measured by CD 62 P10
Table (17): Endothelial microparticles measured by CD31 + / CD4210
Table (18): Endothelial microparticles measured by CD 62 E10
Table (19) :CD62E / CD31 Ratio in the studied groups104
Table (20): The statistical comparative study of PMPs and EMPs10
Table (21): The statistical comparative study of PMPs and EMPs106