AIN SHAMS UNIVERSITY FACULTY OF ENGINNERING STRUCTURAL ENGINEERING DEPARTMENT

Behavior and Design of Steel I-beam-to-Column Rigid Bolted Connections

By

Rimon Aziz Samaan

Assistant Lecturer, Structural Eng. Department
Ain Shams University

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Doctor of Philosophy in Civil Engineering

Supervised by

Prof. Adel Helmy Salem

Former Dean, Professor (Emeritus) of Steel Structures

Structural Eng. Dept. – Faculty of Eng.

Ain Shams University

Prof. Ezzeldin Y. Sayed-Ahmed
Professor of Steel Structures
Struc. Eng. Dept. – Faculty of Eng.
Ain Shams University

Prof. Ahmed A. El-Serwi Professor of Steel Structures Struc. Eng. Dept. – Faculty of Eng. Ain Shams University

Cairo - 2010

EXAMINERS COMMITTEE

1-	Prof. Fouad Helmy Fouad	()
	Chairman and Professor	
	Department of Civil, Construction, and Env	ironmental Engineering
	The University of Alabama at Birmingham,	USA
2-	Prof. Sherif Kamal Hassan	()
	Professor of Steel Structures	
	Faculty of Engineering	
	Ain-Shams University	
_		
3-	Prof. Adel Helmy Salem	()
	Professor of Steel Structures	
	Faculty of Engineering	
	Ain-Shams University	
4-	Prof. Ahmed Abdelsalam El-Serwi	()
	Professor of Steel Structures	
	Faculty of Engineering	
	Ain-Shams University	

Ain Shams University Faculty of Engineering Structural Engineering Department

Thesis submitted by: Rimon Aziz Samaan

Title of the Thesis: Behavior and Design of Steel I-beam-to-Column Rigid Bolted Connections

rof. Adel Helmy Salem	()
Professor of Steel Structures	
Faculty of Engineering	
Ain-Shams University	
Prof. Ezzeldin Y. Sayed-Ahmed	()
Professor of Steel Structures	
Faculty of Engineering	
Ain-Shams University	
Prof. Ahmed Abdelsalam El-Serwi	()
Professor of Steel Structures	
Faculty of Engineering	
Ain-Shams University	

ABSTRACT

Considerable attention has been devoted towards beam-to-column rigid bolted connections. Although different methods of design are introduced in various specifications, yet these methods are not accurate specially in calculating the bolt force and end plate capacity. In this dissertation, a general literature review of the previous studies in the field of rigid connections is presented. An experimental programme has been conducted. Ten full scale specimens for rigid connections were tested with different configurations: five specimens represented flushed end plate connections while the other five represented extended end plate connections. The material properties of the steel plates and bolts were investigated. A nonlinear finite element model which accounts for geometric and material nonlinearities is developed. In this model, 4-node shell elements are used to model steel plates, 8-node solid elements are used to model bolt shank, head and nut while contact elements capable of carrying only compressive forces are used for the contact between the column flange and the head plate. Verification of the proposed finite element model has been performed by comparing its results with the results of the performed experimental study and also with the experimental work previously performed by others. A parametric study is carried out using the verified finite element model for different connection configurations: flushed connections with one and two rows of bolts in the tension side and extended connections with and without stiffeners. Interaction curves for the studied connection configurations have been presented. The influences of bolt diameter, head plate thickness, beam height and bolts edge distances on the connection strength are presented. Furthermore, the effects of various investigated parameters on the bolt force, the prying force and the moment capacity of the connection as well as on the connection's modes of failure have been scrutinized. A comparative study between the finite element results and those using the design equations of the AISC guide No 16 (2002) is performed. Design charts for different connection configurations are also plotted. Equations to calculate the moment capacity of the connections have been proposed using regression analyses. A comparison between the connection moment capacities calculated using the proposed equations and those obtained from the finite element model has been carried out revealing good agreement between them. Conclusions are summarized and recommendations for future researches are listed at the end of the dissertation.

ACKNOWLEDGEMENTS

First and foremost, praise and thanks to our Almighty God.

The author would like to express his deepest gratitude and appreciation to his supervisor, Prof. Adel Helmy Salem for his invaluable guidance, support and encouragement.

He also greatly appreciate the help, guidance and support provided by Prof. Ezz eldin Yazeed and Prof. Ahmed Abdel-Salam throughout all stages of research.

He would like to express his heartfelt appreciation to the soul of his late father, to his beloved mother and the whole family who really helped him and provided lots of support throughout all the stages of this work.

He like to express his special thanks to his wife Marian and his sister Mariam for their precious help and support.

STATEMENT

This dissertation is submitted to Ain Shams University for the Ph.D. degree in Civil Engineering (Structural Engineering).

The work included in this dissertation has been carried out by the author in the Department of Structural Engineering, Ain Shams University, from May 2005 to March 2010.

No part of this dissertation has been submitted for a degree or a qualification at any other university or institution.

Date

Signature:

Name : Rimon Aziz Samaan

Table of Contents

Abstract	iv
Acknowledgement	v
Table of Contents	vii
List of Tables	xiv
List of Figures	xvii
Notations	xxxviii
CHAPTER 1: INTODUCTION	
1.1 Introduction	1
1.2 End-Plate Connections	2
1.3 Classification of Connections	
1.4 General Design Comments	3
1.5 Aim of the Research	
1.6 Methodology	4
1.7 Outline of the Dissertation	4
CHAPTER 2: LITERATURE REVIEW	
2.1 General	9
2.2 End-plate Design	11
2.3 Bolt Design and Prying Force	15
2.4 Previous Numerical Models of Rigid Steel Connections	19
2.5 Behavior and Modeling of Rigid Connections	21
2.5.1 Linear Model	22
2.5.2 Polynomial Model.	22
2.5.3 Three-Parameter Power Model	22
2.5.4 Four-Parameter Power Model	23
2.6 Comparison between Different Specifications and Actual Connection	on Behavior 23
2.6.1 AISC Specifications (2005)	23
2.6.1.1 Introduction	23
2.6.1.2 Calculation of Forces in Bolts Due to Eccentric	city Normal to
the Plane of Force of T-Stub	25

2.6.1.3 Prying Action	27
2.6.1.4 Procedures of Design for Rigid Connections According	g to
AISC 2005 Steel Design Guide Series No. 16 (2002)	30
2.6.1.5 Factors Affecting Connection Strength	40
2.6.1.6 Limit States Check List Included in AISC	40
2.6.2 Egyptian Code of Practice (2001)	41
2.6.2.1 Allowable Forces in Bolts and Calculation of Prying Forces	s. 41
2.6.2.2 Determination of Head Plate Thickness or Tee Stub	42
2.6.2.3 Factors Affecting Connection Strength	43
2.6.3 EC (1993) Specification	43
2.7 Ultimate Capacity of End-Plate Connection	44
CHAPTER 3: EXPERIMENTAL PROGRAMME	
3.1 General	50
3.2 Test Setup	51
3.2.1 "Beam" Description	. 51
3.2.2 Phase-1 Columns Description (Flushed Connections)	52
3.2.3 Phase-2 Columns Description (Extended Connections)	53
3.3 Material Properties	54
3.3.1 Bolt Properties	. 54
3.3.2 Steel Head Plate Properties	56
3.4 Instrumentations of the Tested Connections	. 58
3.4.1 Strain Gauges	58
3.4.1.1 Bolt Strains	. 58
3.4.1.2 Strain Gauges Used for Phase-1	59
3.4.1.3 Strain Gauges Used for Phase-2	59
3.4.2 Load Cell	59
3.4.3 Dial Gauges	59
3.5 Test Procedures	60
3.6 Test Results	60
3.6.1 Experimental Results and Discussion of Phase-1	60
3.6.1.1 Results and Discussion of Specimen F1	61

3.6.1.2 Results and Discussion of Specimen F2	61
3.6.1.3 Results and Discussion of Specimen F3	62
3.6.1.4 Results and Discussion of Specimen F4	63
3.6.1.5 Results and Discussion of Specimen F5	63
3.6.2 Experimental Results and Discussion of Phase-2	64
3.6.2.1 Results and Discussion of Specimen E1	64
3.6.2.2 Results and Discussion of Specimen E2	64
3.6.2.3 Results and Discussion of Specimen E3	65
3.6.2.4 Results and Discussion of Specimen E4	65
3.6.2.5 Results and Discussion of Specimen E5	66
CHAPTER 4: FINITE ELEMENT MODEL	
4.1 Introduction	93
4.2 The Finite Element Method	93
4.3 Model Development	94
4.4 2-D Model	94
4.5 Model Description	95
4.5.1 Shell Elements	95
4.5.2 Solid Elements	96
4.5.3 Contact Elements	97
4.5.3.1 Pure Lagrange Multiplier Method	97
4.5.3.2 Pure Penalty Method	98
4.5.3.3 Lagrange Multiplier on Contact Normal a	nd Penalty on
Frictional (Tangential) Direction	98
4.5.3.4 Augmented Lagrange Method	99
4.5.3.5 The Contact Algorithm Used	99
4.6 Geometric Nonlinearity	100
4.6.1 Large Deflection Small Strain Analysis	101
4.7 Material Nonlinearity	101
4.7.1 Von Mises Yield Criterion	103
4.7.2 Modeling of Uniaxial Behavior in Plasticity	104
4.7.2.1 Stress-Strain Curve	104
4.8 Element Stiffness Matrix	105

4.9 Element Stiffness Matrix in the Global Coordinate System	105
4.10 Isoparametric Elements and Shape Functions	106
4.11 Stress-Strain Relations	107
4.12 Types of Adopted Finite Element Techniques	107
4.13 Finite Element Computer Program Adopted in the Current Stud	y 108
4.14 Solution of the Non-Linear Equations	108
4.14.1 Static Analysis	108
4.14.2 Incremental Control Techniques	109
4.14.2.1 Force Control	109
4.14.2.2 Displacement Control	109
4.14.2.3 Arc-Length Control	109
4.14.3 Iterative Solution Methods	110
4.14.3.1 Modified Newton-Raphson (MNR) Scheme	111
4.14.3.2 Line Search Scheme	111
4. 14.3.3 Termination Schemes	111
CHAPTER 5: VERIFICATION OF EXPERMENTAL	AND FINITE
ELEMENT MODEL	
ELEMENT MODEL 5.1 Introduction	
	123
5.1 Introduction	123
5.1 Introduction5.2 Finite Element Model of Experimental Works	
5.1 Introduction5.2 Finite Element Model of Experimental Works5.3 Comparison between Finite Element model and Previous Exp	
5.1 Introduction5.2 Finite Element Model of Experimental Works5.3 Comparison between Finite Element model and Previous Exp	
 5.1 Introduction 5.2 Finite Element Model of Experimental Works 5.3 Comparison between Finite Element model and Previous Exp 5.3.1 Bose et al (1997) Experimental Work 	
 5.1 Introduction 5.2 Finite Element Model of Experimental Works 5.3 Comparison between Finite Element model and Previous Exp 5.3.1 Bose et al (1997) Experimental Work 5.3.1.1 Specimen Description 	
 5.1 Introduction 5.2 Finite Element Model of Experimental Works 5.3 Comparison between Finite Element model and Previous Exp 5.3.1 Bose et al (1997) Experimental Work 5.3.1.1 Specimen Description 5.3.1.2 Experimental Procedures 	
 5.1 Introduction 5.2 Finite Element Model of Experimental Works 5.3 Comparison between Finite Element model and Previous Exp 5.3.1 Bose et al (1997) Experimental Work 5.3.1.1 Specimen Description 5.3.1.2 Experimental Procedures 5.3.1.3 Finite Element Mesh 	
5.1 Introduction 5.2 Finite Element Model of Experimental Works 5.3 Comparison between Finite Element model and Previous Exp 5.3.1 Bose et al (1997) Experimental Work 5.3.1.1 Specimen Description 5.3.1.2 Experimental Procedures 5.3.1.3 Finite Element Mesh 5.3.1.3.1 Mesh Element	
5.1 Introduction 5.2 Finite Element Model of Experimental Works 5.3 Comparison between Finite Element model and Previous Exp 5.3.1 Bose et al (1997) Experimental Work 5.3.1.1 Specimen Description 5.3.1.2 Experimental Procedures 5.3.1.3 Finite Element Mesh 5.3.1.3.1 Mesh Element 5.3.1.3.2 Mesh Sensitivity analysis	
5.1 Introduction 5.2 Finite Element Model of Experimental Works 5.3 Comparison between Finite Element model and Previous Exp 5.3.1 Bose et al (1997) Experimental Work 5.3.1.1 Specimen Description 5.3.1.2 Experimental Procedures 5.3.1.3 Finite Element Mesh 5.3.1.3.1 Mesh Element 5.3.1.3.2 Mesh Sensitivity analysis 5.3.1.4 Failure Modes	
5.1 Introduction 5.2 Finite Element Model of Experimental Works 5.3 Comparison between Finite Element model and Previous Exp 5.3.1 Bose et al (1997) Experimental Work 5.3.1.1 Specimen Description 5.3.1.2 Experimental Procedures 5.3.1.3 Finite Element Mesh 5.3.1.3.1 Mesh Element 5.3.1.3.2 Mesh Sensitivity analysis 5.3.1.4 Failure Modes 5.3.1.5 Rotation Connection	

5.3.2.2 Mesh Sensitivity Analysis	129
5.3.2.3 Failure Modes	129
5.3.2.4 Experimental Analysis versus Numerical Model Results	130
5.4 Results of the Performed Experimental programme	131
5.4.1 Meshing	131
5.4.2 Comparing Results of the Finite Element Model to the Experime	ental
Test Results	132
5.4.2.1 Phase-1 Specimens (Flushed Connections)	132
5.4.2.1.1 Specimen F1	132
5.4.2.1.2 Specimen F2	132
5.4.2.1.3 Specimen F3	133
5.4.2.1.4 Specimen F4	134
5.4.2.1.5 Specimen F5	134
5.4.2.2 Phase-2 Specimens (Extended Connections)	135
5.4.2.2.1 Specimen E1	135
5.4.2.2.2 Specimen E2	135
5.4.2.2.3 Specimen E3	136
5.4.2.2.4 Specimen E4	137
5.4.2.2.5 Specimen E5	137
5.4.3 Experimental Program's Summary	138
CHAPTER 6: PARAMETRIC STYDY ON FLUSH END PLATE MOMI CONNECTIONS SUBJECTED TO PURE MOMENT	ENT
6.1 Introduction	163
6.2 Connection Specimen	163
6.3 Investigated Parameters	164
6.4 Finite Element Model	166
6.5 Flush End-Plate Moment Connections	168
6.5.1 Flush Unstiffened Connection with Two Bolts in One Row	168
6.5.1.1 Beam 400mm Depth and 100 mm Horizontal Distance betw	veen
Bolts	168
6.5.1.2 Beam 600mm Depth and 100 mm Horizontal Distance betw	veen
Bolts	182

6.5.1.3 Beam 400mm Depth and 200mm Horizontal Distance between	<i>x</i> een
Bolts	184
6.5.1.4 Beam 600 mm Depth and 200mm Horizontal Distance between	ween
Bolts	186
6.5.2 Flush Unstiffened Connection with Four Bolts in Two Rows	187
6.5.2.1 Beam 600mm Depth and 100mm Horizontal Distance between	veen
Bolts	187
6.6.2.2 Beam 600mm Depth and 200mm Horizontal Distance between	ween
Bolts	193
CHAPTER 7: PARAMETRIC STYDY ON EXTENDED END PL	ATE
MOMENT CONNECTIONS SUBJECTED TO PURE MOMENT	
7.1 Introduction	231
7.2 Connection Specimen	231
7.3 Investigated Parameters	. 232
7.4 Finite Element Model	233
7.5 Extended End-Plate Moment Connections	. 234
7.5.1 Extended Unstiffened Connection	. 235
7.5.1.1 Beam 400mm Depth with 100mm Horizontal Distance between	ween
Bolts	235
7.5.1.2 Beam 600mm Depth and 100mm Horizontal Distance between	veen
Bolts	251
7.5.2 Extended Stiffened Connections	252
7.5.2.1 Beam 400mm Depth and 100mm Horizontal Distance between	ween
Bolts	252
7.5.2.2 Beam 600mm Depth and 100mm Horizontal Distance between	ween
Bolts	261
CHAPTER 8: PROPOSED DESIGN EQUATIONS AND CHARTS	
8.1 Introduction	309
8.2 Design Charts	309
8.3 Proposed Design Equation	311
8.3.1 Equation Formation	311

8.3.2 Tabulated Values for the Proposed Equation Constants
8.3.2.1 Flushed Connections with Two Bolts in Tension Side 312
8.3.2.2 Flushed Connections with Four Bolts in Tension Side 313
8.3.2.3 Extended Unstiffened Connections
8.3.2.4 Extended Stiffened Connections
8.3.3 Proposed Equation Accuracy
8.3.3.1 Accuracy of the Proposed Equation with Respect to Finite
Element Analysis Results
8.4 Bolt Diameter and Head Plate Thickness Relations
CHAPTER 9: CONCLUSIONS
9.1 Summary
9.2 Conclusions 336
9.3 Recommendations for Future Studies
APPENDIX A: PARAMETRIC STYDY ON FLUSH END PLATE MOMENT CONNECTIONS SUBJECTED TO PURE MOMENT
A.1 Flush Unstiffened Connection with Two Bolts in One Row
A.1.1 Beam 600mm Depth and 100 mm Horizontal Distance between Bolts .
A.1.1 Beam odomin Depth and 100 min Horizontal Distance between Bons.
A.1.2 Beam 400mm Depth and 200 mm Horizontal Distance between Bolts .
A.1.3 Beam 600 mm Depth and 200 mm Horizontal Distance between Bolts
A.2 Flush Unstiffened Connection with Four Bolts in Two Rows 354
A.2.1 Beam 600mm Depth and 200mm Horizontal Distance between Bolts
ADDENDIN D. DADAMETRIC CTVDV ON EXTENDED END DIATE
APPENDIX B: PARAMETRIC STYDY ON EXTENDED END PLATE MOMENT CONNECTIONS SUBJECTED TO PUDE MOMENT
MOMENT CONNECTIONS SUBJECTED TO PURE MOMENT P. 1. Extended Unstiffened Connection 285
B.1 Extended Unstiffened Connection
B.1.1 Beam occurring Depth and 100 min Horizontal Distance between Botts

B.2 Extended Stiffened Connections	
B.2.1 Beam 600mm Depth and	100 mm Horizontal Distance between Bolts
LIST OF REFERENCES	416

LIST OF TABLES

Table 2-1a: Yield-line mechanism parameter defined for un-stiffened flushed
connections 32
Table 2-1b: Yield-line mechanism parameter defined for stiffened flushed
connections
Table 2-2a: Yield-line mechanism parameter defined for un-stiffened extended
connections
Table 2-2b: Yield-line mechanism parameter defined for un-stiffened extended 1/3
connections
Table 2-2c: Yield-line mechanism parameter defined for stiffened extended 1/2 and
1/3 connections
Table 2 – 3: Minimum bolt pretension load
Table 2 – 4: Limits of using equations of Flush End Plate Connections
Table $2-5$: Limits of using equations of Extended End Plate Connections 40
Table 3 - 1: Head plate thickness and bolts used in tests of Phase-1
Table 3 - 2: Dimensions of columns used in tests of Phase-2
Table 3 - 3: Dimensions and results of tension tests of bolt coupons
Table 3 - 4: Ultimate load and stress of tested bolts with head and nut
Table 3 - 5: Results of different steel coupons for all specimens
Table 5 - 1: Dimensions of verified specimens tested by Bose et al (1997) 125
Table 5 - 2: Output results for accuracy and processing time for different mesh sizes
Table 5 - 3: Modes of failure of six tested specimens by Bose et al (1997) 127
Table 5 - 4: Comparison between finite element model and experimental results128
Table 5 - 5: Dimensions and modes of failure of specimens tested by Jenkins 129
Table 5 - 6: Comparison between finite element model and experimental analysis. 130
Table 5 - 7: Comparison between finite element model and experimental analysis. 138
Table 6 - 1: Values of stress and strain used in parametric study for different steel
types used
Table 6 - 2: Values of stress and strain used in parametric study for different bolt
types used
Table 6 - 3: Nominal moment capacity for un-stiffened flush connection with two
bolts in one row with $h = 40 \text{cm}$ and $g = 10 \text{ cm}$