

The Value of Studying Corneal Hysteresis in Ocular Surgeries

An Essay
Submitted for the Partial Fulfillment of Master
Degree in Ophthalmology
By

Ahmed Kamal Mohammed Hussein

(M.B., B.Ch.) Ain Shams University

Under the Supervision of:

Prof. Dr. Hassan Ezz-Eldin Alsamaa

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Mohammed Gamil Metwally

Assistant Professor of Ophthalmology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2010

قيمة دراسة التباطؤ القرنى في جراحات العين

رسالة تمهيداً للحصول على درجة الماجستير في طب و جراحة العين

مقدمة من

الطبيب / أحمد كمال محمد حسين بكالوريوس الطب و الجراحة كلية الطب – جامعة عين شمس

تحت إشراف

أ.د./ حسن عزالدين السماع أستاذ طب وجراحة العين كلية الطب – جامعة عين شمس

د./ محمد جميل متولى أستاذ مساعد طب وجراحة العين كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس 2010

The Value of Studying Corneal Hysteresis in Ocular Surgeries

*B*y:

Ahmed Kamal Mohammed Hussein (M.B., B.Ch.)-Ain Shams University

Under the Supervision of:

Prof. Dr. Hassan Ezz-Eldin Alsamaa

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Mohammed Gamil Metwally

Assistant Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Discussion Committee:

Dr. Mohammed Hamed Ali

Assistant Professor of Ophthalmology Faculty of Medicine – Alazhar University

Dr. Tamer Mohammed Alraggal

Assistant Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Prof. Dr. Hassan Ezz-Eldin Alsamaa

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

قيمة دراسة التباطؤ القرنى في جراحات العين

مقدمة من:

الطبيب / أحمد كمال محمد حسين بكالوريوس الطب و الجراحة - كلية الطب – جامعة عين شمس

تحت إشراف:

أ.د./ حسن عزالدين السماع

أستاذ طب وجراحة العين - كلية الطب – جامعة عين شمس

د المحمد جمیل متولی

أستاذ مساعد طب وجراحة العين - كلية الطب - جامعة عين شمس

لجنة المناقشة:

د / محمد حامد على (ممتحن خارجي)

أستاذ مساعد طب وجراحة العين- كلية ألطب (بنين) - جامعة الأزهر.

د / تامر محمد الرجال (ممتحن داخلی)

أستاذ مساعد طب وجراحة العين- كلية الطب - جامعة عين شمس.

أ.د / حسن عزالدين السماع (عن المشرفين)

أستاذ طب وجراحة العين- كلية الطب - جامعة عين شمس.

Table of Contents

Title	Data	Page
Acknowledgment		II
List of		III
abbreviations		
List of figures		IV
List of tables		VI
Chapter (1)	Introduction	1
Chapter (2)	Corneal Biomechanics	4
Chapter (3)	The Ocular Response	16
	Analyzer	
Chapter (4)	Factors Affecting Corneal	26
	Hysteresis	
Chapter (5)	Effects of Ocular	53
	Surgeries on Corneal	
	Hysteresis	
Summary		84
References		87
Arabic Summary		98

Acknowledgment

Praise be to ALLAH All-Mighty, the All-Kind and All-Merciful. HE who gifts people sight and insight. And peace and blessing upon HIS messenger, Mohammad, who taught us that knowledge is more valuable than light.

I would like to express my deepest gratitude towards Prof. Dr. Hassan Ezz-Eldin Alsammaa, for his valuable guidance and continued encouragement.

Moreover, I would like to sincerely thank Dr. Mohammed Gamil Metwally, for his great effort and invaluable advice during this process.

List of abbreviations

CCT	Central Corneal Thickness
СН	Corneal Hysteresis
CPACG	Chronic Primary Angle Closure Glaucoma
CRF	Corneal Resistance Factor
CXL	Collagen Cross Linking
DM	Descemet's Membrane
DM1	Dystrophia Myotonica
DXEK	Descematorhexis & Endokeratoplasty
DZ	Di-Zygotic
GAT	Goldman Applanation Tonometer
ICRS	Intra-Corneal Ring Segments
INTRACOR	Femto Second Laser Intrastromal Flap
IOL	Intra Ocular Lens
IOP	Intra Ocular Pressure
IOPCC	Corneal Compensated Intra Ocular Pressure
IOPG	Goldman Correlated Intra Ocular Pressure
LASIK	Laser in Situ Keratomileusis
LASEK	Laser-Assisted Sub-Epithelial Keratectomy
MZ	Mono-Zygotic
NTG	Normal Tention Glaucoma
OPA	Ocular Pulse Amplitude
ORA	Ocular Response Analyser
POAG	Primary Open Angle Glaucoma
PKP	Penetrating Keratoplasty
PRK	Photo Refractive Keratectomy
PTK	Phototherapeutic Keratectomy
SBK	Sub-Bowman's Keratomileusis
STCT	Selective Tissue Corneal Transplantation

List of figures

~ -		
No.	Data	Page
Figure 1	Experiments illustrating elastic and	9
	viscoelastic properties in a 7 mm, full-	
	thickness horizontal corneal strip from a 63	
	year old donor.	
Figure 2	Major biomechanical loading forces in the	12
	cornea and a model of biomechanical	
	central flattening associated with disruption	
	of central lamellar segments.	
Figure 3	The Ocular Response Analyzer.	18
Figure 4	Method of Operation of ORA .	18
Figure 5	Measurement of CH using the ORA. The	19
	difference between the inward and outward	
	applanation is called corneal hysteresis.	
Figure 6	Typical CH distribution of a normal	Error!
	population.	Bookmark
		not
		defined.
Figure 7	Correlation of CH & CRF versus IOPG	23
T: 0	("GAT").	2.5
Figure 8	Identifying Normal Signals.	25
Figure 9	Graph showing profiles of 24 hour change	28
	pattern in CCT, sitting IOP, and CH. Solid	
	symbols represent the older group and open	
	symbols represent the younger group. Error	
Figure 10	bars, standard error of mean (n = 15).	28
Figure 10	Scatter plot showing the correlation between mean 24-hour CCT and mean 24-	40
	hour corneal hysteresis. Linear regression	
	showing a positive correlation in the older	
	subjects (solid circles; $n = 15$) and in the	
	younger subjects (open circles; n =15) The	
	two regression lines were statistically	
	different ($P = 0.014$).	
Figure 11	Comparison of CH distribution of normal,	38
	keratoconic, and Fuchs' subjects.	
Figure 12	Typical signals from a keratoconic eye. CH	40
	value of 6.4 mmHg.	
Figure 13	Severe keratoconus signal (measurement	40

	values will be unreliable).	
Figure 14	Identifying ectasia signals.	41
Figure 15	Histogram of CCT.	44

Figure 16	Scatter plot of relationship between	44
	hysteresis and CCT.	
Figure 17	Typical relationship between CCT and	45
	IOPG in a normal population (N=182 eyes).	
Figure 18	Plotting the inward and outward	47
	applanation events versus GAT on the same	
	corneas at 3 pressure levels.	
Figure 19	Comparing the CH distribution of normal	48
	and glaucomatous subjects.	
Figure 20	IOPCC and IOPG in 24 NTG eyes.	49
Figure 21	IOPCC versus CCT for a population of	50
	normal eyes $(N = 182)$.	
Figure 22	IOPCC pre and post LASIK in 14 eyes.	51
Figure 23	Time-dependent changes of CH, CRF, and	Error!
	CCT. CCT and CRF significantly increased	Bookmark
	after three hours of lens wear with eye	not
	closure. Both returned toward baseline with	defined.
	time. CH did not change significantly in	
Figure 24	response to lens wear with eye closure.	56
Figure 24	Typical signal from a normal subject's eye pre-LASIK. CH value is 11.1 mmHg.	50
Figure 25	Signal from the same subject's eye one	57
Figure 23	week post-LASIK. CH value is 7.8 mmHg.	31
Figure 26	CH of 15 eyes pre- and post-LASIK.	57
Figure 27	Twenty-eight eyes Pre/Post LASIK IOPCC.	58
Figure 28	Change in CH in each of the 83 eyes,	60
	comparing the pre and postoperative	00
	findings following the INTRACOR	
	procedure.	
Figure 29	Mean values of CRF and CH, pre and	60
	postoperatively following the INTRACOR	
	procedure.	
Figure 30	Graph showing preoperative CCT, and on	62
	the first postoperative day (CCT	
	postoperative) after clear corneal cataract	
	surgery as well as CCT of the pseudophakic	
E' 24	control group (CCT-IOL).	(2
Figure 31	Graph showing preoperative CH, and on	62
	the first postoperative day (CH	
	postoperative) after clear corneal cataract	
	surgery as well as CH of the pseudophakic	

control aroun (CIL IOI)	
control group (CH -IOL).	

Figure 32	Pre-therapeutic correlation of CH with IOPG. CH was negatively correlated with IOPG in CPACG eyes before IOP-lowering therapy.	72
Figure 33	Post-therapeutic correlation of the change in CH and the change in IOPG. Decreases in IOPG were positively correlated with increases of CH at 2 weeks (Δ2weeks) and 4 weeks (Δ4 weeks) after IOP-lowering therapy in chronic PACG.	72
Figure 34	Pre-operative ORA profile showing CH.	76
E: 25	Post-operative ORA profile showing CH.	76
Figure 35	1 ost-operative ofth profile showing cff.	70
Figure 36	Distribution of CH values in normal corneas (Group 2) and in corneas following DXEK (Group 1).	80
	Distribution of CH values in normal corneas (Group 2) and in corneas following DXEK	

List of tables

No.	Data	Page
Table 1	ORA readings: differences in corneal biomechanical properties in non smokers versus smokers.	33
Table 2	Characteristics of normal & myotonic patients.	34
Table 3	Demographic details of twin pairs included in the study.	37
Table 4	Changes in ORA parameters after cataract surgery.	65
Table 5	Data collection of the patients included in the study.	71
Table 6	Data collection of the patients included in the study.	75
Table 7	Changes in IOPCC, IOPG and corneal biomechanics after UVA & riboflavin CXL.	83

Chapter 1

Introduction

The cornea as a viscoelastic structure contains a component of static resistance and a component of dynamic resistance, the response of the cornea to an applied force such as tonometry depends on the magnitude of the force and on the rate of change of the force. (1)

The cornea reacts to stress as a visco-elastic material. This means that for a given stress, the resultant corneal strain is time dependent. the visco-elastic response consists of an immediate deformation followed by a rather slow deformation. (2)

It has been suggested that hysteresis may be a measurement which is the result of the damping of the cornea because of its visco-elastic properties and is derived from the difference of the two applanation measurements during the applanation process. Thus the hysteresis is a measure of visco-elasticity due to the combined effect of the corneal thickness and rigidity. (3)

Corneal hysteresis is determined by releasing an air puff from the ocular response analyzer (ORA) that causes inward and then outward corneal motion which in turn provides two applanation measurements during a single measurement process, the device utilized a rapid air impulse to deform the cornea, and the shape changes were monitored by an electro-optical system. (3)

Thus a new era of knowledge about the cornea was elicted and the ophthalmologists had to take that in their considerations. Also in the field of ocular surgeries, ophthalmic-surgeons can get