The Reliability of Candida Skin Test in Investigating Teell function in Infants

Thesis Submitted for Partial Fulfillment of Master Degree in Pediatrics

Ву

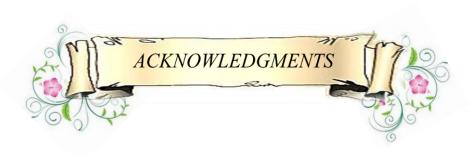
Shaimaa Abdel-Azim Mohamed El-Toukhy

Ain Shams University

Supervised by

Prof/ Shereen Medhat Reda

Professor of Pediatrics
Faculty of Medicine - Ain Shams University


Dr/ Rasha Hassan El-Owaidy

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Dr/ Neama Lotfy Mohamed

Lecturer of Clinical Pathology
Faculty of Medicine- Ain Shams University

Faculty of Medicine Ain Shams University 2015

First of all thanks to **ALLAH** the most merciful.

Secondly this dissertation would not have been possible without the help, support and patience of my principal supervisor of this thesis:

Prof. Shereen Medhat Reda, Professor of Pediatrics at Faculty of Medicine - Ain Shams University, I would like to sincerely thank her for her outstanding support, supervision and expert guidance.

I would also like to sincerely thank Dr. Rasha Hassan El-Owaidy, Lecturer of Pediatrics, Faculty of Medicine - Ain Shams University, for her help, constructive criticism, elegant viewpoints and keen insights.

It is my pleasure also to thank **Dr. Neama Lotfy Mohamed**, Lecturer of Clinical Pathology, Faculty of Medicine - Ain Shams University for her time and for the great effort she has done for us.

I really appreciate and would like to thank all the parents of our enrolled subjects for their cooperation and their trust in us

My thesis is dedicated to my parents, my husband, my son, my sister and brother; I wish to make them all proud of me.

Shaimaa Eltoukhy

Table of Contents

List of Abbreviations				
List of Figures	IV			
List of Tables	VI			
Introduction	1			
Aim of the Work	3			
Review of Literature	4			
Chapter 1: The Immune System	4			
Chapter 2: T Lymphocytes	7			
Chapter 3: Evaluation of T Lymphocytes	34			
Subjects and Methods	50			
Results	63			
Discussion	85			
Recommendations	95			
Summary	96			
References	99			
Arabic Summary				

List of Abbreviations

ADA : adenosine deaminase assay
 ALC : absolute lymphocyte count
 ANC : absolute neutrophil count
 APCs : antigen presenting cells
 BCG : Bacillus Calmette-Guerin

C.albicans : candida albicans

CBC : complete blood count
CCR : chemokine receptor

CDs : cluster of differentiation

CFSE : carboxyfluorescin succinimidyl ester

CMF-PBS : calcium and magnesium free phosphate buffered

saline

CO2 : carbon dioxide
CON A : concanavalin A

Cr51 : chromium 51 release assay
CTLs : cytotoxic T lymphocytes

CXCR5 : cysteine-x-cysteine motif receptors 5

DN : double negative**DP** : double positive

DTH : delayed type hypersensitivity

EDTA : ethylene diamine tetraacetic acid

ELISA : enzyme linked immunosorbent assay

ELISPOT : enzyme linked immunospot

FBS : fetal bovine serum

H1N1 : hemagglutinin 1 and neuraminidase 1

Hb : Haemoglobin

HSC : haematopoietic stem cells

IL : Interleukin

INF- γ : interferon gamma

INF- γ **R** : interferon gamma receptor

IOR : interquartile ranges

JAK : janus kinases

LFα : lymphotoxin alpha

MCV : mean corpuscular volume

MHC : major histocompatibility complex

MNCs : mononuclear cells

MPPs : multipotent progenitors

mTECs : medullary thymic epithelial cells

NK : natural killer cells

OD : optical density

PBS : phosphate buffered saline

PHA : phytohemagglutinin

PLT : Platlets

PNL : polymorphonuclear leukocytesPNP : purine nucleoside phosphorylase

PPD : purified protein derivative

RPMI : Roswell Park Memorial Institute

SCID : severe combined immunodeficiency

SD : standard deviation

STAT : signal transducer and activator of transcription

T reg : T regulatory cells

TCR : T cell receptor

TEM : effector memory T cellTfh : T follicular helper cells

TGF-beta : transforming growth factor beta

Tr1 : type 1 regulatory T cell

TRECs : T cell receptor excision circles
 TSAs : tissue specific self antigens
 V(D)J : variable diversity joining

WBCs : white blood cells

ZAP-70 : zeta chain associated protien kinase 70

List of Figures

Figure 1: Intrathymic T cell development9
Figure 2: Activation of naive and effector T cells by antigen14
Figure 3: The receptor for IFN- γ subunits & assembly
Figure 4: T cell development and differentiation
Figure 5: CD4+ TH – cell subset differentiation20
Figure 6: The prototypical cytokines and their corresponding signalling pathways that regulate each TH cell fate are depicted29
Figure 7: Properties of TH1, TH2, and TH17 subsets of CD4+ helper T cells and their role in health and disease
Figure 8: T cell proliferation assays
Figure 9: The four layers formed after ficoll separation
Figure 10: BCG scar, Tuberculin and Candida skin test positive results. 65
Figure 11: Correlation between tuberculin induration diameter and age among enrolled infants
Figure 12: Correlation between Candida test induration diameter and weight among enrolled infants
Figure 13: Correlation between candida test induration diameter and weight percentiles69
Figure 14: Correlation between tuberculin test induration diameter and total leucocytic count
Figure 15: Correlation between tuberculin test induration diameters for absolute neutrophil count
Figure 16: Correlation between candida and tuberculin intradermal tests results

Figure 17: BCG scar in Tuberculin skin test positive & negative groups 7
Figure 18: BCG scar in Candida skin test positive & negative groups7
Figure 19: Candida and Tuberculin skin tests (positive & negative)7
Figure 20: Candida skin test in positive and negative tuberculin groups. 8
Figure 21: Weight percentile for Candida test postive and negative groups

List of Tables

Table 1: Normal absolute lymphocyte counts in infants and children:37
Table 2: Lymphocyte Subset Reference Ranges 40
Table 3: Evaluation of T cell Deficiency
Table 4: Clinical parameters of enrolled infant
Table 5: Blood picture results of enrolled infant: 64
Table 6: BCG scar, Tuberculin and Candida skin test among enrolled infants 65
Table 7: Candida and tuberculin test results among enrolled infants66
Table 8: IFN γ levels before and after PHA stimulation and the difference in between
Table 9: Correlation between clinical and laboratory parameters of enrolled infants. 68
Table 10: Correlation between clinical and immunological parameters70
Table 11: Correlation between immunological test results and blood picture counts
Table 12: Correlations between the different immunological parameters of enrolled infant
Table 13: Distribution of Tuberculin and candida test results in relation to BCG scar
Table 14: Comparison between tuberculin and Candida skin test results 77
Table 15: Comparison between infants with different age groups79
Table 16: Comparison between infants with and without BCG scar80
Table 17: Comparison in clinical and laboratory data between tuberculin positive and negative groups

Table	18:	Comparison	between	infants	with	positive	and	negative
intrade	rmal	candida test						83

INTRODUCTION

T cells and cell mediated immunity constitute one of two major cellular components of the adaptive immune response. The function of T cells is to recognize specific "non-self" antigens, during a process known as antigen presentation, leading to generation of specific responses that are tailored to maximally eliminate specific pathogens or pathogen-infected cells (Ballow, 2014).

Measurement of cell-mediated immunity can be undertaken by both in vitro and in vivo methods. It is, however, more problematic than humoral assessment as assays are plagued by difficulties in standardisation, biological variability, imprecision and technical complexity. Most tests are highly specialised and referral to a clinical immunologist is recommended (Limaye, 2010).

Delayed-type hypersensitivity skin testing provides a functional in vivo assessment of cellular immunity. The skin response following intradermal inoculation of antigen is dependent on antigen-specific memory T cells and results in local inflammation after 48–72 hours due to the recruitment of mononuclear cells (lymphocytes, monocytes) and neutrophils

(Limaye, 2010). Both standardized and non standardized candida intradermal skin tests are used in clinical practice with variable results (Ohri and Omaha, 2004; Yeo et al., 2009).

AIM OF THE WORK

This study is aimed to investigate the reliability of candida skin test in evaluation of T cell function in comparison to in-vitro assessment of T cell function in a group of healthy Egyptian infants using the manually prepared Candida intra-dermal skin test.

The ultimate objective is to validate the use of this test in the screening for T cell function in this age group.

REVIEW OF LITERATURE

CHAPTER 1 THE IMMUNE SYSTEM

The immune system is a complex network of cells and organs that functions to protect the body against pathogens. Any invader to the body will be attacked by the components of the innate immune system and, afterwards, by the specific immune system.Innate and specific immunities work conjointly (Protonotariou et al., 2010).

1.1 The innate immune system:

The innate immune system provides a rapid first line of defense, giving the adaptive immune system time to build up a more specific response. Components include phagocytic cells (neutrophils and monocytes in blood, macrophages and dendritic cells in tissues), antigen-presenting cells (APC), natural killer (NK) cells, polymorphonuclear leukocytes (PNL) (Parkin and Cohen, 2001).