Review of Chronic Obstructive Airway Disease patients admitted at Maamoura Chest Hospital from 2009 to 2012

Thesis

Submitted for partial fulfillment of master degree in chest diseases

Presented by

Al Shaimaa Ahmed ELBastawesy

M.B, B.CH

Under supervision of

Prof. Laila Ashour Helala,

Professor of Chest Diseases,
Ain Shams University.

Dr. Ashraf Abbas ELMaraghy,

Lecturer of Chest Diseases,
Ain Shams University.

Ain Shams University 2014

To My Parents

Acknowledgment

I wish first to thank God Allah for helping me to complete this work.

I would like to express my deepest thanks and gratitude to **Prof. Dr. Laila Ashour Helala**, Professor of Chest Diseases, Faculty of medicine, Ain Shams University For her continuous help and guidance, her precise scientific opinions and her encouragement during the progress of this work which allowed the study to be completed.

I would specially like to thank **Dr. Ashraf Abbas ELMaraghy,** Lecturer of Chest Diseases, Faculty of medicine, Ain Shams University for his friendly careful supervision and hard working. I'm also greatly indebted to him for providing the idea for this work.

LIST OF CONTENTS

Chap	oter	Page
ACK	NOWLEDGMENT	i
LIST	OF CONTENTS	ii
LIST	OF TABLES	iii
LIST	OF FIGURES	vi
LIST	OF ABBREVIATIONS	vii
I.	INTRODUCTION	1
II.	AIM OF THE WORK	5
III.	REVIEW OF LITERATURE	6
IV.	SUBJECTS AND METHODS	109
V.	RESULTS	111
VI.	DISCUSSION	143
VII.	SUMMARY	166
VIII.	CONCLUSIONS	171
IX.	RECOMMENDATIONS	172
X.	REFERENCES	176
XI.	ARABIC SUMMARY	

LIST OF ABBREVIATION

AMP : Adenosine mono phosphate

CAL : Chronic airflow limitation

CMV : Cytomegalo virus

COAD : Chronic obstructive airway diseaseCOLD : Chronic obstructive lung disease.

COPD : Chronic obstructive pulmonary disease.
 CORD : Chronic obstructive respiratory disease.
 CPAP : Continuous positive airway Pressure

FEV₁ : Forced expiratory volume in one second

FVC : Forced vital capacity
LTOT : Long term O₂therapy.

LVRS : Lung volume reduction surgery

MC : Slow vital capacityMDI : Metered dose inhaler

NIMN : Non invasive mechanical ventilation

NIV : Non Invasive ventilation

NPPV : Non invasive positive pressure ventilation

PSV : Pressure support ventilation

TLC : Total lung capacity

EGFR : Epidermal growth factor receptor

HADS : Hospital Anxiety and depression scale

PRIME-MD: Primary Care Evaluation of Menal Disorders

BLVR : Bronchoscopic Lung Volume Reduction

MMP12 : Matrix Metalloproteinase 12

DPIS: Dry Powder Inhalers

LIST OF TABLES

Table		Page
(1)	Risk factors for chronic obstructive pulmonary disease.	31
(2)	Key indicators for considering a diagnosis of COPD.	33
(3)	Causes of Chronic Cough.	36
(4)	Spirometric classification of chronic obstructive pulmonary disease (COPD)	43
(5)	Differential diagnosis of chronic obstructive pulmonary disease (COPD)	46
(6)	Treating Tobacco Use and Dependence: A Clinical Practice Guideline—Major Findings and Recommendations	49
(7)	Brief strategies to help the patient willing to quit	51
(8)	Bronchodilator in Stable COPED	56
(9)	Benefits of Pulmonary Rehabilitation in COPD	74
(10)	Clinical history, physical findings and diagnostic procedures in patients with exacerbation of chronic obstructive pulmonary disease (COPD)	93
(11)	Indications for hospitalisation of patients with a COPD exacerbation	94
(12)	Level I: outpatient treatment	96
(13)	Level II: treatment for hospitalised patient	97
(14)	Level III: treatment in patients requiring special or intensive care unit	97

Table		Page
(15)	Distribution of studied cases according to demographic data (n=1637)	111
(16)	Distribution of studied cases according to manual working (n=637)	114
(17)	Distribution of studied cases according to addiction habits (n=1637)	115
(18)	Distribution of studied cases according to smoking habits (n=1637)	117
(19)	Distribution of studied cases according to symptoms (n=1637)	119
(20)	Distribution of the studied cases according to frequency of exacerbation/year (n=1637)	122
(21)	Distribution of studied cases according to other co morbidities (n=1637)	124
(22)	Distribution of studied cases according to the complications of the disease (n=1637)	126
(23)	Distribution of studied cases according to ICU admission (n=1637)	128
(24)	Relation between ICU admission and complications	129
(25)	Distribution of studied cases according to FEV1/FVC (FEV1) (n=1637)	130
(26)	Relation between FEV1/ FVC ratio and smoking index	131
(27)	Distribution of the studied cases according to pharmacological treatment (n=1637)	132
(28)	Distribution of the studied cases according to non pharmacological treatment	134

Table		Page
(29)	Relation between O2 therapy and complications	136
(30)	Relation between CPAP and complications	137
(31)	Relation between invasive mechanical ventilation and complications.	138
(32)	Mortality rate among the studied cases (n=1637)	139
(33)	Relation between O2 therapy and mortality	140
(34)	Relation between CPAP and mortality	140
(35)	Relation between invasive mechanical ventilation and mortality	141
(36)	Relation between mortality and ICU stay	141

LIST OF FIGURES

Figure		Page
(1)	Mechanisms underlying airflow limitation in COP.	8
(2)	Continuum of care for chronic obstructive pulmonary disease (COPD). FEV1: forced expiratory volume in one second.	108
(3)	Distribution of studied cases according to age.	112
(4)	Distribution of studied cases according to sex.	112
(5)	Distribution of studied cases according to residence.	113
(6)	Distribution of studied cases according to occupation.	113
(7)	Distribution of studied cases according to drug addiction habits	116
(8)	Distribution of studied cases according to smoking habits.	118
(9)	Distribution of studied cases according to dyspnea grade.	120
(10)	Distribution of studied cases according to cough.	121
(11)	Distribution of studied cases according to wheezes.	121
(12)	Distribution of studied cases according to frequency of exacerbations/year.	123
(13)	Distribution of studied cases according to other co morbidities	125

Figure		Page
(14)	Distribution of studied cases according to complications of the disease.	127
(15)	Distribution of studied cases according to ICU admission.	128
(16)	Distribution of studied cases according to pharmacological treatment.	133
(17)	Distribution of the studied cases according to non pharmacological treatment.	135
(18)	Mortality rate among the studied cases.	139
(19)	Relation between mortality and ICU stay.	142

AIM OF THE WORK

The aim of this study is to review the COPD cases who were admitted at Maamoura Chest Hospital during the period from 2009 to 2012 as regards distribution of the disease, risk factors of the disease, severity and complications of the disease.

INTRODUCTION

Chronic obstructive lung disease (COLD), chronic obstructive airway disease (COAD), chronic airflow limitation (CAL) and chronic obstructive respiratory disease (CORD), is the occurrence of chronic bronchitis or emphysema, a pair of commonly co-existing diseases of the lungs in which the airways narrow over time National Heart Lung and Blood Institute et al 2010 This limits airflow to and from the lungs, causing shortness of breath (dyspnea). In clinical practice, COPD is defined by its characteristically low airflow on lung function tests Nathell L, et al 2007. In contrast to asthma, this limitation is poorly reversible and usually gets increasingly worse "Chronic obstructive pulmonary disease (COPD), a common preventable and treatable disease, is characterized by airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases. Exacerbations and comorbidities contribute to the overall severity in individual patients."

Worldwide, COPD ranked as the sixth leading cause of death in 1990. It is projected to become the fourth leading cause

of death worldwide by 2030, due to an increase in smoking rates and demographic changes in many countries *Rabe KF*, *et al* 2007.

COPD is the third leading cause of death in the U.S.Chronic bronchitis is defined in clinical terms as a cough with sputum production on most days for 3 months of a year, for 2 consecutive years Mathers CD and Loncar D 2006. In the airways of the lung, the hallmark of chronic bronchitis is an increased number (hyperplasia) and size increased (hypertrophy) of the goblet cells and mucous glands of the airway. As a result, there is more mucus than usual in the airways, contributing to narrowing of the airways and causing a cough with sputum. As chronic bronchitis progresses, there is squamous metaplasia (an abnormal change in the tissue lining the inside of the airway) and fibrosis (further thickening and scar Burrows B et al 1966ring of the airway wall). The consequence of these changes is a limitation of airflow.

Patients with advanced COPD that have primarily chronic bronchitis rather than emphysema were commonly referred to as "Blue Bloaters" because of the bluish color of the skin and lips (cyanosis) along with hypoxia and fluid retention seen in them *Kitaguchi Y*, et al 2006.

Lung damage and inflammation of the air sacs (alveoli) causes emphysema. Emphysema is an enlargement of the air spaces distal to the terminal bronchioles, with destruction of their walls *Paoletti Met al 2009*. The destruction of air space walls reduces the surface area available for the exchange of oxygen and carbon dioxide during breathing. It also reduces the elasticity of the lung itself, which results in a loss of support for the airways that are embedded in the lung. These airways are more likely to collapse causing further limitation to airflow. These people are also known as "Pink Puffers", due to their pink complexion *Petty TL*, *et al 2002*.

One of the most common symptoms of COPD is shortness of breath (dyspnea). People with COPD commonly describe this as: "My breathing requires effort," "I feel out of breath," or "I can't get enough air in" *Longmore JM*, *et al 2004*. People with COPD typically first notice dyspnea during vigorous exercise when the demands on the lungs are greatest. Over the years, dyspnea tends to get gradually worse so that it can occur during milder, everyday activities such as housework. In the advanced stages of COPD, dyspnea can become so bad that it occurs during rest and is constantly present.