

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING MECHANICAL POWER DEPARTMENT

SIMULATION OF RADIATIVE COOLING SYSTEMS IN CLEAN ROOM APPLICATIONS USING COMPUTATIONAL FLUID DYNAMICS

A THESIS

SUBMITTED FOR THE PARTIAL FULFILLMENT OF MASTER DEGREE IN MECHANICAL ENGINEERING

By

Eng. Mohamed Abd Al Rahman Al Metwally Al Beltagy

B. Sc. In Mechanical Power Engineering 2001

Supervisors

Dr. Ahmed Youssif El Assy Dr. Ahmed Reda El Baz Dr. Mohamed Saad El Din El Morsy

Mechanical Power Eng. Department Faculty of Engineering Ain Shams University

Cairo, 2010

Examiner Committee

The underdesigned certify that they have read and recommended to the Faculty of Engineering, Ain Shams University for acceptance a thesis entitled by "Simulation of Radiative Cooling Systems in Clean Room Applications Using Computational Fluid Dynamics", submitted by Mohamed Abd Al Rahman Al Metwally Al Beltagy, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering.

Name	Signature
1. Prof. Dr. Mohamed Amr Serag El Din Mechanical Eng. Department Faculty of Science and Engineering American University in Cairo	
2. Prof. Dr. Nabil Abd El Aziz Mahmoud Mechanical Power Eng. Department Faculty of Engineering Ain Shams University	
3. Dr. Ahmed Youssif El Assy Mechanical Power Eng. Department Faculty of Engineering Ain Shams University	
4. Dr. Ahmed Reda El Baz Mechanical Power Eng. Department Faculty of Engineering Ain Shams University	

Statement

This dissertation is submitted to Ain Shams University in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering.

The work included in this thesis was made by the author during the period from 2007 to December 2010 at the Mechanical Power Engineering Department, Ain Shams University.

No part of this thesis has been submitted for degree or qualification at any other university or institute.

Date : 30/12/2010

Signature :

Name : Mohamed Abd Al Rahman

Al Metwally Al Beltagy

Acknowledgement

I would like to thank **Dr. Ahmed El Baz** for his effective guidance and massive support in each step of this research. I would like to thank him also for offering me his own computer and licensed CFD software known as PHOENICS as well as his great help in the simulation work.

I would like to thank **Dr. Ahmed El Assy and Dr.**Mohamed El Morsy for their accurate scientific review of the thesis.

I would like to thank **Dr. Michael Malin** (CHAM Technical Support Manager) and the rest of his team for their considerable technical assistance in using the PHOENICS software.

Finally, I would like to express my appreciation to **my** wife for her support during the period of this research.

Mohamed Al Bellagy

2010

Abstract

Radiant cooling techniques have been developed rapidly over the last years for its capability to provide draft free and thermally homogeneous environment. These specific conditions are required in some clean room applications such as hospitals and measurement laboratories. The study investigates air dynamic and thermal behavior in three cases, two of which are validation test cases that were experimentally conducted before by others. The experimental results of those test cases are presented and compared to the simulation outputs, reached by the CFD (Computational Fluid Dynamics) software used in this study, in order to validate it. The first validation test case involves a room that is air conditioned via a normal convection HVAC system depending on a cold air draft coming out from an air jet. The second validation test case involves a room that is air conditioned via a radiant ceiling panel. The last test case presented in this thesis is a study of the proposed convection and radiant cooling systems, done for a measurement laboratory, located in the National Institute of Standards, Mariutia, Cairo, Egypt. The results show that radiant cooling techniques are capable of producing more dynamically stable, thermally stable and comfortable conditions than conventional convection HVAC techniques.

The CFD work, presented in this thesis, is conducted by a CFD simulation software, called PHOENICS using a module, dedicated for HVAC applications, called FLAIR. The software copy, used in this work, is licensed for research purpose only.

The software was developed by the CHAM company, located in Wimbledon, England.

Table of Contents

Examiner Committee II
StatementIII
Acknowledgement
AbstractV
Table of ContentsVII
Nomenclature XI
Greek LettersXIII
Superscripts and SubscriptsXIV
AbbreviationsXV
List of FiguresXVI
List of TablesXXIII
Chapter (1): Introduction1
1.1 Radiant Cooling Mechanism
1.2 Types of Radiant Cooling Systems2
1.2.1 The suspended ceiling panel system3
1.2.2 The capillary tube system4
1.2.3 The concrete core system5
1.3 Economic Approach6
1.4 Constrains of Radiant Cooling7
1.5 Application of Radiant Cooling in Clean Rooms8
1.6 Objective of Present Work9
Chapter (2): Literature Review
2.1 Introduction
2.2 General Cases
2.3 Cases Involving Modeling and Simulation of a Room with a Radiant Cooling Ceiling

C	Chapter (3): Flow and Energy Models	38
	3.1 Introduction	38
	3.2 Flow Main Governing Equations	38
	3.3 Turbulence Models	40
	3.4 Eddy-Viscosity Concept	42
	3.5 Classification of Turbulence Models	43
	3.6 Zero-Equation Models	44
	3.6.1 Constant Viscosity Model	44
	3.6.2 Prandtl Mixing-Length Model	44
	3.6.3 LVEL Turbulence Model	45
	3.7 One-Equation Models	46
	3.7.1 Prandtl's K-L Model	46
	3.8 Two-Equation Models	47
	3.8.1 The K-E Model	47
	3.8.2 The Yap K-E Model	48
	3.8.3 The RNG K-E Model	49
	3.8.4 The Chen-Kim K-E Model	50
	3.8.5 Two-Scale K-E Model	50
	3.9 Near-Wall Approaches	52
	3.9.1 Wall-Function Method	53
	3.9.2 Low-Reynolds-Number Models	53
	3.10 Radiative Heat Ttransfer Models	55
	3.10.1 The IMMERSOL Radiative Heat Transfer Model	56
	3.10.2 Mathematical Formulation of The IMMERSOL Mo	odel
		58
C	Chapter (4): CFD Mathematical Approach	
	4.1 Introduction	62
	12 Variables Classification	62

4.3 Storage	64
4.4 Grids	65
4.5 The Balance Equation	66
4.5.1 Finite-Volume Form	67
4.5.2 The Correction Form	67
4.6 Numerical Convection Schemes	68
Linear Schemes	69
Non Linear Schemes	69
4.7 Basic Discretisation Schemes	72
4.7.1 Central Differencing Scheme	72
4.7.2 Upwind Differencing Scheme	72
4.7.3 Hybrid Differencing Scheme	72
4.8 Higher-Order Discretisation Schemes	73
4.8.1 Classification of Higher Order Schemes	73
4.8.2 Flux Limiter Formulation	73
4.9 Solution Methods	74
4.9.1 Point by Point	74
4.9.2 Slabwise	74
4.9.3 Whole Field	75
4.10 PHOENICS CFD Program Structure	76
4.10.1 Introduction	76
4.10.2 The Structure of PHOENICS	77
Chapter (5): Software Validation	80
5.1 Introduction	80
5.2 Convection Test Case	80
5.2.1 Overview	80
5.2.2 Experimental Setup	81
5.2.4 Case Modeling by PHOENICS	84

5.2.5 Grid Independence Test	86
5.2.6 Turbulence Models Test	88
5.3 Radiant Ceiling Test Case	94
5.3.1 Overview	94
5.3.2 Experimental Setup	94
5.3.3 Case Modeling by PHOENICS	96
5.3.4 Grid Independence Test	97
5.3.5 Radiant Cooling Test at Various Ceiling Panel Temperatures	98
Chapter (6): Study of Radiant Cooling of a Clean Room in	a
Measurement Laboratory	108
6.1 Introduction	108
6.2 Physical Model Setup	108
6.3 Case Modeling by PHOENICS	111
6.4 Grid Independence Test	113
6.5 Cooling Test with Various Proposed HVAC Arrange	
6.5.1 Radiant Ceiling Arrangement	
6.5.2 Radiant Walls Arrangement	120
6.5.3 Convection Arrangement	123
6.6 Results and Discussion	128
Chapter (7): Conclusions and Recommendations	134
7.1 Conclusions	134
7.2 Recommendations for Future researches	135
References	136
Appendices	138
Appendix A: Standard Properties of Air (Air Properties,	· ·
Appendix B: Metabolic Heat Generation (ASHRAE, 200	

Nomenclature

a	Absorptivity
Ar_{d}	Archimedes Number, $Ar_d = g\beta d (T_{in} - T_m) / U_{in}^2$
C	Mass (kg) – Constant
Ç	Specific Heat Capacity (W/m ³)
c_p	Specific Heat at Constant Pressure (J/kg.K)
d	Diameter (m)
f_{cl}	Ratio of Clothed Surface Area to Nude Surface
	Area
g	Gravitational Acceleration (m/s ²)
H, h	Enthalpy (J/kg)
h_c	Convective Heat Transfer Coefficient (W/m ² K)
I_{cl}	Thermal Resistance of Clothing (m ² K/W)
I_{m}	Mixing Length
J_0	Radiosity (W/m ²)
k	Thermal Conductivity (W/m K)
K	Turbulent Kinetic Energy (m ² /s ²)
L	Wall Distance (m)
L_0	Wall Gap (m)
L_{H}	Thermal Load of The Human Body (W/m ²)
L_{S}	Turbulent Length Scale (m)
M	Metabolism Rate in The Human Body (W/ m ²)
P	Pressure (Pa)
P_a	Water Vapor Partial Pressure (Pa)
Pe	Peclet Number, Pe = Re Pr
Pr	Prandtl Number, $Pr = c_p \mu / k$