Role of platelet Pan Genera Detection (PGD) Test as rapid screening test for detection of bacterial contamination of single donor platelets concentrates

Thesis Submitted for Partial Fulfillment of master Degree in Clinical Pathology.

By

Dr. Mahmoud Yehya Sleem Ahmed

Blood Transfusion Center, faculty of Medicine, Cairo University

Under Supervision of Prof. Dr. Mervat El Ansary

Professor of Clinical and Chemical PathologyFaculty of Medicine, Cairo University

Prof. Dr. Mona Abd El Azeez Wasef

Professor of Clinical and Chemical PathologyFaculty of Medicine, Cairo University

Faculty of Medicine
Cairo University
2010

بسم الله الرحمن الرحيم

((قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم))

صدق الله العظيم

Declaration

This thesis has not been previously submitted for a degree at this or at any other university and is the original work of the writer.

Mahmoud Yehya Sleem Ahmed

Dedication

I would like to dedicate this work to my family and my colleagues for their encouragement, putting up with me and supporting me through all this work.

Many thanks to all of them

Mahmoud Yehya Sleem

ACKNOWLEDGMENT

I am deeply thankful to Allah to show me the right path and helping me to complete this work.

My profound gratitude and appreciation to **Prof.Dr.Mervat El Ansary**, Professor of clinical and chemical pathology, Cairo University for suggesting the topics and assessing the work giving much of her time and effort in constructing the data, the practical part of this thesis and revising the work.

I would like to express my appreciation to **Prof.Dr. Mona** Abd **El Azeez Wasef** helping me in the microbiological aspect of the study both scientifically and clinically.

I am also deeply thankful to **Dr. Abeer Mohamed Rehan**,General manger of Blood Transfusion Center Cairo University for helping me in the clinical aspect of this study.

Many thanks to every body who participated in completion of this work.

Mahmoud yehya Sleem

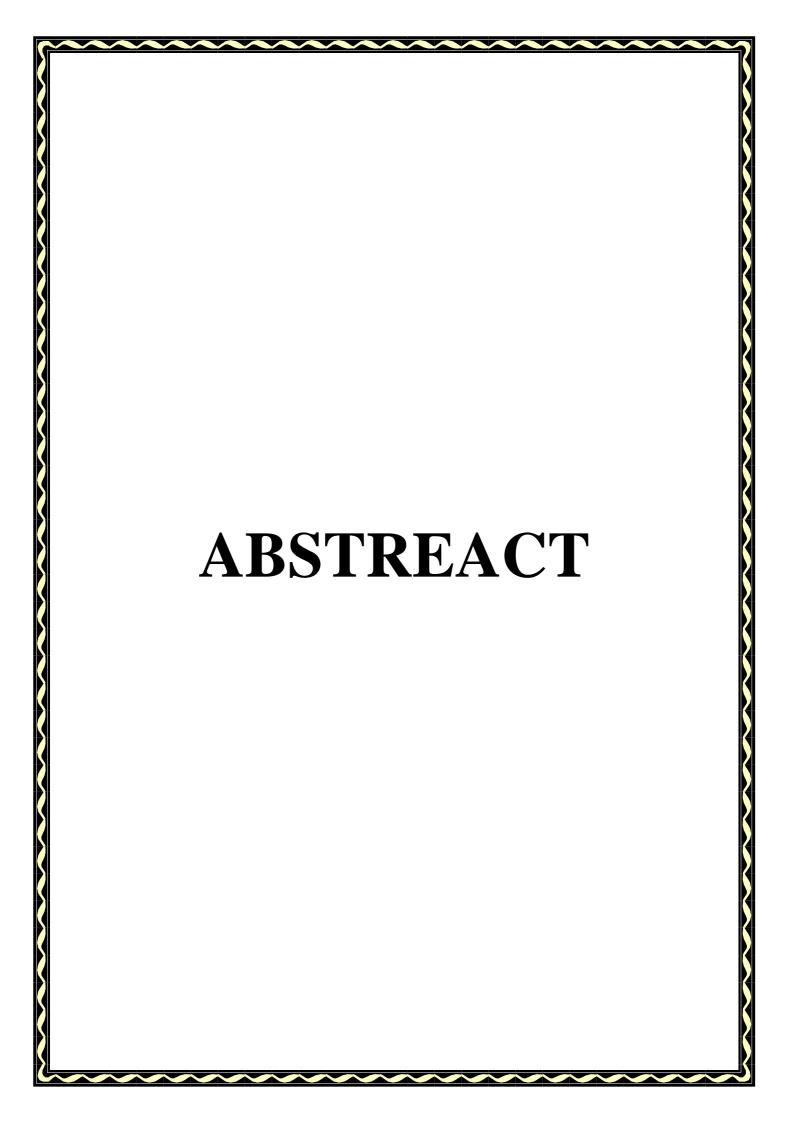
CONTENTS

<u>rage</u>
CONTENTS1
LIST OF TABLES
LIST OF FIGURES4
LIST OF ABBREVIATIONS5
ABSTRACT7
INTRODUCTION AND AIM OF WORK8
I-REVIEW OF LITERATURE10
1.1. CHAPTER (I) PLATELET OVERVIEW10
1.2. CHAPTER (II) PLATELET TRANSFUSION&PLATELETPHARESIS22
1.3. CHAPTER (III) BACTERIAL CONTAMINATION OF PLATELET UNITS30
II-MATERIALS AND METHODS47
2.1. PLATELET (PGD) TEST
2.1.1. TEST SUMMARY AND PRINCIPLE
2.1.2. REAGENTS AND EQUIPMENTS
2.1.3. GENERAL SAFETY PRECAUTIONS50
2.1.4. HANDLING PRECAUTONS
2.1.5. PROCEDURE AND STEPS
2.1.5.1. SAMPLE COLLECTION AND PREPARATION
2.1.5.2. METHODS OF SAMPLE ACQUISITION
2.1.5.3. TEST PROCEDURE
2.1.5.4. PRETESTING PREPARATION AND NOTES
2.1.5.5. CONTROL PROCESSING
2.1.5.6. SAMPLE PROCESSING
2.1.5.7. PERFORMING THE TEST
2.1.5.8. QUALITY CONTROL
2.1.5.9. INTERPRETATION OF RESULTS
2.2. BACTERIAL CULTURE (COMPARATIVE METHOD)62
2.2.1. REAGENTS AND EQUIPMENTS62
2.2.2. SAMPLING
2.2.3. TEST PROCEDURE

rage	
III- RESULTS	64
3.1. DONORS SELECTION	64
3.2. PHYSICAL CRITERIA OF DONORS	65
3.3. MEDICAL HISTORY OF DONORS	65
3.4. LABORATORY CRITERIA OF DONORS	65
3.5. PRE-DONATION CLINICAL SIGNS OF SELECTED DONORS	66
3.6. BACTERIAL CONTAMINATION OF PLATELET UNITS (DAY 0)	66
3.6. BACTERIAL CONTAMINATION OF PLATELET UNITS (DAY 5)	67
3.6. BACTERIAL CONTAMINATION OF PLATELET UNITS (DAY 7)	67
IV-DISCUSSION	68
V-SUMMARY AND CONCULUSIONS	79
VI-RECOMMENDATIONS	81
VII-REFERENCES	82
VIII-ARARIC SUMMARY	90

LIST OF TABLES

	<u>Page</u>
Table (1)	: Physical Criteria & history of selected donors65
Table (2)	: Laboratory criteria of selected donors65
Table (3)	: Donors clinical signs prior to donation66
Table (4)	: Bacterial contamination of platelet units (Day 0)66
Table (5)	: Bacterial contamination of platelet units (Day 5)67
Table (6)	: Bacterial contamination of platelet units (Day 7)67


LIST OF FIGURES

		<u>Page</u>
Figure 1	;) platelets in peripheral blood	11
Figure 2	;) Kinetics of blood cell lineage	13
Figure 3	;) Platelet collection	29
Figure 4	;) Plateletpharesis machine	30
Figure 5	;) Platelet PGD test device	58
Figure 6	;) Non reactive sample	59
Figure 7	;) Reactive sample	59
Figure 8	;) Negative control	60
Figure 9	;) Positive control	60
Figure 10	;) Invalid test result	61
Figure 11	:) Invalid test result.	61

LIST OF ABBREVIATIONS

ADPAdenosine Diphosphate
AIDSAcquired Immune Deficiency Syndrome
APCsApheresis Platelet Concentrates
BCBuffy Coat
BSABody Surface Area
CADCoronary Artery Disease
CCICorrected platelet Count Increment
COXCyclo -Oxygenase
CVACerebro Vascular Accident
DICDisseminated Intravascular Coagulopathy
DNAD eoxyribo N ucleic A cid
ECVExtra Corporeal Volume
FDAFood and Drug Association
HBsAgHepatitis B Surface Antigen
HCVHepatitis C Virus
HELLPHemolytic Anemia, Elevated Liver enzymes, Low Platelet count
HIVHuman Immunodeficiency Virus
HITHeparin-Induced Thrombocytopenia
HLAHuman Leucocyte Antigen
LPSLipopolysaccharide
LTALipoteichoic acid
LRAPLeucocyte Reduced Apheresis Platelet.
MIMyocardial Infarction
NSAIDNon Steroidal Anti Inflammatory Drugs
PAODPeripheral Artery Occlusive Disease
PDGFPlatelet Derived Growth Factor
PGDPan Genera Detection
PGI2Prostaglandin I2
PPCsPooled buffy coat Platelet Concentrates
PRPPlatelet Rich Plasma
RBCsRed Blood Cells

SDPs	Single Donor Platelets
TABC	Transfusion Associated Bacterial Contanination
TGF	Tissue Growth Factor
TTP	Thrombotic Thrombocytopenic Purpura
TXA2	Thromboxane A2
UVA	Ultra Violet ray A
VWF	Von -Willebrand Factor

Abstract

Bacterial contamination of platelet products, both single donor apheresis platelet units and whole blood-derived platelet pools, continues to occur despite preventive measures. While some advances have been made in decreasing the rate of bacterial contamination of platelet units, particularly through diversion methods and early culture, a great deal remains to be done to eliminate the problem. Diversion methods have decreased contamination rates associated with skin commensal organisms.

In this study10 single donor platelet units were collected from eligible platelet donors using the standard collection procedures of Blood Transfusion Center of Cairo University hospitals. Units were examined for bacterial contamination at days (0,5,7) of collection Using our new method platelet pan genera detection (PGD) test and bacterial culture as a comparative method. All examined units were negative for bacterial contamination up to day 7 according to results revealed by both platelet (PGD)test and bacterial culture. This means that we can extend shelf life of platelet units up to 7 days instead of 5 days and units can be examined for bacterial contamination immediately before transfusion to insure safety of transfused units.

Key Words:

Platelets PGO test – Bacterial - Contamination.

INTRODUCTION AND AIM OF WORK

Introduction and aim of the work

Platelet storage conditions promote the proliferation of bacteria rendering even minor contamination at the time of collection potentially lethal after 5 – 7 days of storage. Sources of product contamination include skin flora mobilized as the needle is inserted, asymptomatic bacteremia in the donor and environmental contamination during manufacture and storage. The introduction of sterile, closed collection systems, donor health screening, improved skin preparation techniques, initial sample diversion strategies, product inspection, and most recently bacterial culture of products at the blood centre of screening at the time of issue have all contributed to limiting and/or detecting contamination and to improving platelet safety. Bacterial concentrations in contaminated platelet units are very low at the time of collection and may not be reliably detectable by available test methods in samples drawn at that time. During component storage this initial small inoculum of bacteria may grow, but by consequence of the diverse interactions of bacteria, donor unit and environmental conditions, the onset and rate of growth is highly unpredictable. Because of this variability, QC testing for bacterial contamination at a later phase of component storage may serve to maximize the ability to identify contaminated platelet units compared to testing only at an early phase of storage (R.J. Benjamen, 2008).

A novel Pan Genera Detection (PGD) technology has been developed that detects the presence of conserved antigens lipoteichoic acid (LTA) and lipopolysaccharide (LPS) found on aerobic and anaerobic GP and GN bacteria, respectively. LTA and LPS targets are located on the surface of their respective bacteria and are primary constituents of the cell wall(**Fischer.,1988,Rietschel et al.,1996**) LTA and LPS antigens can