Relation Between Hearing Loss and Otolith Dysfunction in Elderly

Thesis

Submitted in Partial Fulfillment of Master Degree in Audiology

Bγ **Nancy Metwally Aly** M.B. B Ch.

Under supervision of

Prof. Dr. Amany Ahmed Shalaby

Professor of Audiology, ENT Department Faculty of Medicine Ain Shams University

Dr. Fathy Naeem Fatouh

Lecturer of Audiology, ENT Department Faculty of Medicine Ain Shams University

Dr. Doha Rasheedy Aly

Lecturer of Geriatrics Medicine, Geriatrics Department Faculty of Medicine Ain Shams University

> Faculty of medicine Ain Shams University 2015

العلاقة بين ضعف السمع والإختلال الوظيفي في حصاه الأذن في الأفراد كبار السن

رسالة

توطئة للحصول علي حرجة الماجيستير في أمراض السمع

مقل مة من الطبيبة/ نانسي متولي علي بكالوريوس الطب والجراحة

تحت اشراف

أ.د اماني احمد شلبي

استاذة السمعيات قسم الانف والأذن والحنجرة كلية الطب جامعة عين شمس

د. فتحي نعيم فتوح

مدرس السمعيات قسم الانف والأذن والحنجرة كلية الطب جامعة عين شمس

د. ضحي راشيدي علي

مدرس طب المسنين قسم طب المسنين كلية طب جامعة عين شمس

كلية طب جامعة عين شمس ٢٠١٥

Acknowledgment

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Amany Ahmed Shalaby**, Professor of Audiology, ENT Department Faculty of Medicine Ain Shams University for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Fathy Macem Fatouh**, Lecturer of Audiology, ENT Department Faculty of Medicine Ain Shams University for her sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Doha Rasheedy Aly**, Lecturer of Geriatrics Medicine, Geriatrics Department Faculty of Medicine Ain Shams University for her great help, outstanding support, active participation and guidance.

Nancy Metwally Aly

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iv
List of Abbreviations	vi
Introduction and Rationale	1
Aim of the Work	4
Review of literature	
Functional anatomy of the inner ear	5
Hearing loss in elderly	22
Vestibular dysfunction in elderly	37
Methodology	60
Results	69
Discussion	91
Conclusions	101
Recommendations	102
Summary	103
References	106
Arabic summary	

List of Tables

Table No.	Title	Page No.	•
Table (1):	Age and gender distribution for both		
Table (2):	and study group. Distribution of risk factors in the group.	study	.69 .70
Table (3):	Distribution of vestibular symptoms complaining patients.	within	
Table (4):	Mean(X), Standard deviation (SD) and of pure tone thresholds in dBHL in	l range	
Table (5):	group	l range Γ) and	72
Table (6):	group	l range study	.72
Table (7):	group. Mean(X), Standard deviation (SD) and of speech reception threshold (SRT)	l range Γ) and	
Table (8):	discrimination scores% (SD%) in study g Mean(X), Standard deviation (SD) and confidence limit for different of parameters in the control group	nd 95% EVEMP	73
Table (9):	comparison between Rt & Lt ears Mean(X), Standard deviation (SD) and of different cVEMP parameters in the	l range e study	
Table (10):	group and comparison between Rt & L Comparison between the control and group as regard percent identificat	study	75
	cVEMP.		76
Table (11):	Comparison between cVEMP parame		77

List of Tables

Table No.	Title Page 1	Vo.
Table (12):	Mean(X), Standard deviation (SD) and ANOVA test of cVEMP parameters in control, study group and normative adult data	78
Table (13):	Mean(X), Standard deviation (SD) and 95% confidence limit for different oVEMP parameters in the control group and	1 0
Table (14):	comparison between right and left ears Mean(X), Standard deviation (SD) and range of different oVEMP parameters in the study group and comparison between right and left	80
	ears.	80
Table (15):	<u>.</u>	0.1
Table (16).	identification in control and study group	81
1 able (10):	control and study group	82
Table (17):	Mean(X), Standard deviation (SD) and ANOVA test of oVEMP parameters in control, study group and normative adult	83
Table (18):	data Comparison between VEMP parameters in patients complaining and non-complaining from vertigo in the study group	
Table (19):	Correlation between hearing thresholds and	04
	VEMP parameters in the study group:	85
1 abie (20):	factors and the pure tone thresholds in the	
	study group.	87
Table (21):	Correlation between demographic data, risk factors and VEMPs parameters	87
Table (22):	Comparison between pure tone hearing thresholds in patients with +ve and -ve history	
	of noise exposure within the study group	88

List of Tables cont...

Table No.	Title Page N	Vo.
Table (23):	Comparison between VEMPs parameters in patients with +ve and -ve history of noise	
Table (24):	exposure within the study group Comparison between pure tone thresholds in	88
	hypertensive and non-hypertensive patients within the study group.	90
Table (25):	Comparison between VEMPs parameters in hypertensive and non-hypertensive patients within the study group.	90

List of Figures

Fig. No.	Title Page No	0.
Figure (1):	The membranous labyrinth shown within the bony labyrith outer line	6
Figure (2):	Auditory pathway	
Figure (3):	Schematic cross-section illustrating a type I	
8 (-/	cell and a type II cell	12
Figure (4):	Schematic view of the ampulla of a	
9 ,	semicircular canal, Quoted from	14
Figure (5):	Schematic view of the neural connections of	
3	vestibular nuclei	16
Figure (6):	Mean pure-tone air conduction thresholds for	
	(A) men and (B) Women in four age groups	30
Figure (7):	cVEMP circuitry	49
Figure (8):	oVEMP circuity	50
Figure (9):	cVEMP electrode montage	65
Figure (10):	oVEMP electrode montage.	67
Figure (11):	Gender distribution for both control and	
	study group.	69
Figure (12):	Distribution of risk factors in the study	
	group.	70
Figure (13):	Distribution of vestibular symptoms.	71
Figure (14):	Mean pure tone thresholds in the study and	
	control group at different frequencies.	74
Figure (15):	Response of cVEMP (A: in 60 year old subject	
	within the control group, B: in 60 year old	
	patient within the study group)	77
Figure (16):	Mean P13 and N23 latencies in adult, control	
	and study group	79
Figure (17):	Mean of P13-N23inter- amplitude in adult,	
	control and study group	79
Figure (18):	Response of oVEMP (A: in 60 year old subject	
	within the control group, B: in 60 year old	
	patient within the study group)	82

List of Figures cont...

Fig. No.	Title Page	No.
E' (10).	Many of NI D1 internal consists de la cal-	-14
rigure (19):	Mean of N1-P1 inter- amplitude in adu control and study group	-
Figure (20):	Correlation between low frequency pure to	
	average and cVEMP amplitude	86
Figure (21):	Correlation between mid-frequency pu	ıre
	tone average and cVEMP amplitude	86
Figure (22):	Correlation between high frequency pu	ıre
	tone average and cVEMP amplitude	86
Figure (23):	Mean of P13, N23 latencies in patients w	
C	+ve and -ve history of noise exposure	89

List of Abbreviations

Abb.	Full term
AC	
AP	Action Potential
ARHL	Age related hearing loss
CAP	Central Auditory Processing
CDP	Computerized dynamic posturography
CEBA	Central effect of biological aging
CEPP	Central effect of peripheral pathology
CVD	Cardiovascular disease
cVEMP	Sound-evoked cervical vestibular-evoked
	myogenic potential
DPOAEs	Distortion Product Otoacoustic Emission
EMG	Electromyography
EP	Endolymphatic potential
GAB	Gamma-Aminobutyric acid
HTN	Hypertension
IC	Inferior colliculus
IHC	
LVST	Lateral vestibule-spinal tract
MLF	Medial longitudinal fasciculus
MVST	Medial vestibule-spinal tract
NHANES	National Health and Nutrition Examination
	Survey
OHC	Outer hair cells
oVEMP	Ocular vestibular-evoked myogenic potential
PTA	Pure Tone Audiometry
RST	Reticulo-spinal tract
SCM	Sternocleidomastoid
SHA	Sinusoidal harmonic acceleration test
SOAEs	Spontaneous Otoacoustic Emission
SP	Summation Potential
SSC	Semicircular canals stimulation:
	Ventral cochlear nucleus
	Vestibulo-collic reflex
VN	Vestibular nucleus

List of Abbreviations cont...

Abb.	Full term	
	velocity step test	

Introduction and Rationale

ne of the main features of the Egyptian population over the last few decades is the gradual increase in the absolute and relative numbers of older people. They reached 7.2% in (2006) according to the last Egyptian census (EDHS, 2008). Approximately one-third of persons over 65 years are affected by disabling hearing loss (WHO, 2012) and about one out of three older adults falls each year which is a major public health problem (Tromp et al, 2001).

The audio-vestibular systems experience age related changes causing functional decline that is considered part of the normal aging process (*Dalton et al, 2003*). Age- related vestibular system changes started from the age of 55 and includes loss of sensory hair cells, otoconia, vestibular nerve fibers, Scarpa's ganglion cells and vestibular nucleus neurons with decreased blood flow to the inner ear (*Park et al, 2001*; *Rauch et al, 2001*; *Tang et al, 2001*).

In addition to vestibular sensory loss, the elderly are prone to a variety of diseases that affect audio-vestibular and postural control systems, including glaucoma, diabetic and hypertensive retinopathy, which all affect vision; diabetic peripheral neuropathy, which affects position sense in the feet and legs, ect... (Hoffman et al, 2006).

_____ 1 _____

The previously mentioned age related changes and pathologies in the audio-vestibular system can have severe consequences. The older adult with hearing impairment is more limited in verbal communication, with effects on productivity, quality of life, cognitive and emotional status (Van Eyken et al, 2007), whereas the individual with balance dysfunction is more prone to experience dizziness and has an increased risk for falls, which is a major public health problem (Agrawal et al, 2009).

The diagnostic process of hearing loss and imbalance in elderly people is more or less a complicated task and must distinguish between otologic, central, medical, and psychogenic etiologies. In order to reach proper diagnosis in those patients specific equipment for neuro-otologic, audiometric and laboratory vestibular investigations are required (Agrawal et al, 2012).

In the last few years, the attention is being focused on VEMP as a potential electrophysiological method to reflect the function of the otolith and its central vestibular connections which considered one of the primary vestibular contributions for postural control (Serrador et al, 2009). Sound-evoked cervical vestibular-evoked myogenic potential (cVEMP), and vestibular-evoked myogenic potential (oVEMP) latencies and amplitudes are used as a measure of saccular and utricular function, respectively (Patko et al, 2003).

VEMP is considered an objective, secure, simple and comfortable method to evaluate vestibular pathology mainly in people with balance dysfunction. Its recording provides both a straightforward non-invasive exploration of each vestibule independently and a precise method to explore the utricle, saccule and vestibulospinal tracts (Ferber-Viart et al, 1999; Colebatch, 2001).

Many studies were done to investigate the effect of aging process on the auditory and vestibular function, however only a few investigations had evaluated the relationship of the functional decline in these two systems, so the present work was planned to study the relation between the hearing loss and otolith organ dysfunction in elderly and to evaluate the effect of risk factors on the two systems.