Effects of Inhaled Steroids on cell mediated immunity (CMI) and possible reactivation of tuberculosis in asthmatic patients

Thesis submitted for partial fulfillment of MSC degree in Internal Medicine

By

Mohammed Abdelslam Khamis Aljaly

M.B,B.CH.

Supervised By

Prof. Maged Mohammed Refaat

Prof. of Internal Medicine Allergy and Clinical Immunology

Faculty of Medicine - Ain Shams University

Prof. Mohammed Shreef El Bohev

Prof. of Chest Diseases

Faculty of Medicine - Ain Shams University

Dr Eman Elsayed Ahmed

Lecture of Internal Medicine Allergy and Clinical Immunology Faculty of Medicine - Ain Shams University

Faculty of Medicine

Ain Shams University

تأثير الكورتيزون بالاستنشاق على المناعة الخلوية في مرضى الربو الشعبى واحتمالية نشاط مرض الدرن الكامن

رسالة توطئة للحصول على درجة الماجستير فى أمراض الباطنة العامة من مقدمه من

الطبيب/ محمد عبد السلام خميس الجالي بكالوريوس الطب والجراحة

تحت اشراف

أستاذ كتور / ماجد محمد رفعت أستاذ أمر اضالباطنة العامة - الحساسية والمناعة

كلية الطب – جامعة عين شمس

أستاذ دكتور / محمد شريف البوهي الستاذ أمراض الصدر السدر كلية الطب – جامعة عين شمس

دكتور / إيمان السيد احمد مدرس أمر اضالباطنة العامة - الحساسية والمناعة كلية الطب – جامعة عين شمس ٢٠١١

ACKNOWLEDGEMENT

First and foremost, thanks to Allah. To whom I relate any success in my life.

Words fail to express my deep appreciation and gratefulness to Prof. Dr. Maged Mohammed Refat,

Professor of Internal medicine, Faculty of Medicine, Ain Shams University, for his valuable advice, guidance and encouragement not only during all the stages of this research work but also in my career in Internal medicine.

I wish to express my deepest appreciation to **Prof.**

Dr. MohammedShreif El Bohey, Professor of Chest

Disease, Faculty of Medicine, Ain Shams University, for his sincere effort and support. His excellent and creative thoughts were of great value in accomplishing this research work.

I'm deeply indebted to the great help offered by **Dr. Enarch sayed Alimed,** Lecturer of Internal medicine,
Faculty of Medicine, Ain Shams University, for kind help
and sincereadvice to ensure the accuracy of this work.

Recommendation

Because ICS have a dose-dependent systemic effect, although less than oral corticosteroid treatment, (**Lipworth et al., 1999**) careful follow up should be undertaken for patients with asthma who are treated with ICS. When acute pneumonia develops in these patients, atypical pulmonary tuberculosis should be taken into account as a differential diagnosis.

We thought that Careful observation of patients is considered to be important because pulmonary tuberculosis in association with ICS was found among inpatients, there was no relationship to the total dose or duration of administration of ICS, there were no clinical symptoms, and the patients exhibited atypical radiographic findings.

We recommend to apply this study in wider scale of patients and for a longer duration using the same dose of beclomehasone diproprinate inhaler and to assess other systemic side effects of inhaled corticosteroid to achieve safe form and dose for asthmatic patients.

Also using of the more recent accurate laboratory technique includes polymerase chain reaction assays for the detection of bacterial DNA to diagnose pulmonary tuberculosis especially atypical form.

Chart	Description	Page
Chart 1	Descriptive analysis of the studied cases as	103
	regard age	
Chart 2	Descriptive analysis of the studied cases as	105
	regard gender	
Chart 3	Descriptive analysis of the studied cases as	107
	regard occupation	
Chart 4	Descriptive analysis of the studied cases as	109
	regard disease duration	
Chart 5	Range of PEFR in study groups	110
Chart 6	Percentage of change of ESR after the study	112
	period	
Chart 7	Mean of ESR Before and after the study period	112
Chart 8	Chang in X-ray in percentage after complete	114
	the study	
Chart 9	Mean of Tuberculin test before and after the	119
	study period	
Chart 10	Percentage of change in tuberculin skin test	119
	after the period of study	

Contents

List of Abbreviations	
List of Tables	
List of Charts	VII
List of Figures	VIII
Introduction and aim of the work	IX
Chapter 1Inhaled corticosteroid	1
Chapter 2The Host immune	50
Response to tuberculosis	
Patients and Methods	
Results and Statistics	
Discussion	
Conclusion	
Summary	
Recommendation	
References	
Arabic summary	

Table	Description	page
Table (1)	ICSs currently are available for use via the	8
	inhalation route	
Table (2)	Pharmacokinetic and Pharmacodynamics	9
	Features of Inhaled Corticosteroids	
Table (3)	Relative Topical Potencies and Receptor	32
	Binding Characteristics of Currently	
	Available Inhaled Corticosteroid	
Table (4)	Estimates of the Lung to Systemic	34
	Bioavailability Ratios for Inhaled	
	Corticosteroids	
Table (5)	Descriptive analysis of the studied cases as	102
	regard age	
Table (6)	Descriptive analysis of the studied cases as	104
	regard gender	
Table (7)	Descriptive analysis of the studied cases as	106
	regard occupation	
Table (8)	Descriptive analysis of the studied cases as	108
	regard disease duration	
Table (9)	Descriptive analysis of studied cases as	110

	regard PEFR	
Table 10	Changes in ESR before and after treatment	111
	in group study	
Table 11	Changes in X-ray before and after treatment	113
	in study groups	
Table 12	Changes in tuberculin skin test induration	118
	before and after treatment in study groups	
Table 13	Changes in sputum analysis for acid fast	121
	bacilli before and after treatment in study	
	groups	

Figure	Description	Page
Figure 1	effects ICSs via the glucocorticoid receptor	3
Figure 2	GCS-GR complex affects gene transcription	4
	or modulates gene expression	
Figure 3	History of uses of ICS on asthma guideline	18
Figure 4	increase in FEV1 in using ICS compared	21
	with placebo	
Figure 5	Balance between Th1 and Th2 responset TB	76
	infection	
Figure 6	A balance that determines latent infection or	85
	disease	
Figure 7	Flowmate Model 2500	93
Figure 8	Tuberculin Skin test Ruler	95
Figure 9	Internal structure of Metered dose inhaler	96
Figure 10	Acid fast bacilli stained with Ziehl-Neelsen	98
	stain	
Figure 11	X- ray show apical cavity in patient number	115
	37	
Figure 12	X- ray show hilar lymphadenopathy in	116
	patient number 15	
Figure 13	X- ray show lobar pneumonia in patient	117
	number 48	
Figure 14	Positive Tuberculin test (10.8mm) in patient	120
	number 15	

Table	Description	page
Table (1)	ICSs currently are available for use via the	
	inhalation route	
Table (2)	Pharmacokinetic and Pharmacodynamics Features	
	of Inhaled Corticosteroids	
Table (3)	Relative Topical Potencies and Receptor Binding	
	Characteristics of Currently Available Inhaled	
	Corticosteroid	
Table (4)	Estimates of the Lung to Systemic Bioavailability	
	Ratios for Inhaled Corticosteroids	
Table (5)	Descriptive analysis of the studied cases as regard	102
	age	
Table (6)	Descriptive analysis of the studied cases as regard	104
	gender	
Table (7)	Descriptive analysis of the studied cases as regard	106
	occupation	
Table (8)	Descriptive analysis of the studied cases as regard	108
	disease duration	
Table (9)	Descriptive analysis of studied cases as regard PEFR	110
Table 10	Changes in ESR before and after treatment in group	111
	study	
Table 11	Changes in X-ray before and after treatment in	113
	study groups	
Table 12	Changes in tuberculin skin test induration before	118
	and after treatment in study groups	
Table 13	Changes in sputum analysis for acid fast bacilli	121
	before and after treatment in study groups	

Chart	Description	Page
Chart 1	Descriptive analysis of the studied cases as regard age	103
Chart 2	Descriptive analysis of the studied cases as regard gender	105
Chart 3	Descriptive analysis of the studied cases as regard occupation	107
Chart 4	Descriptive analysis of the studied cases as regard disease duration	109
Chart 5	Range of PEFR in study groups	110
Chart 6	Percentage of change of ESR after the study period	112
Chart 7	Mean of ESR Before and after the study period	112
Chart 8	Chang in X-ray in percentage after complete the study	114
Chart 9	Mean of Tuberculin test before and after the study period	119
Chart 10	Percentage of change in tuberculin skin test after the period of study	119

Introduction

An important advantage of inhaled corticosteroids (ICS) is that they have been shown to have a topical anti-inflammatory effect (**Lawrence et al., 1997**).

Up till now, there is no documented evidence that the incidence or the course of acute viral or bacterial respiratory infections is affected by the use of conventional doses of inhaled steroids in immune-competent hosts, and only occasional cases of reactivation of tuberculosis have been reported with the use of inhaled steroids (Shaikh, et al., 1992).

Although corticosteroids are known to be immunosuppressive, there have been no studies to show that use of corticosteroids increase the risk of developing new tuberculosis or reactivating old tuberculous lesion (**Dharam et al., 2002**).

Aim of the work

To assess the effects of ICS on cell mediated immunity (CMI) and whether this therapy reactivates latent tuberculous infection in asthmatic patients.

Chapter1 1 ICS

Inhaled glucocorticosteroids (ICS)

Introduction

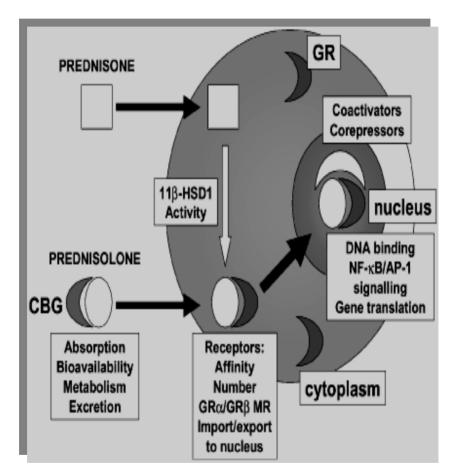
In general, ICSs are favored over oral corticosteroids because their anti-inflammatory effect is directed at the airways, which reduces the risk of unwanted systemic effects (Lawrence et al., 1997).

Mechanism of action

The inflammatory process in asthma involves the increased expression of a wide variety of pro-inflammatory chemokines, cytokines, growth factors, lipid mediators, adhesion molecules, enzymes, and increased numbers of resident and invading inflammatory cells. That milieu leads to persistent or recurrent symptoms that require daily anti-inflammatory treatment to maintain appropriate symptom control and quality of life (GINA 2009).

Inhaled Corticosteroids reduce airway inflammation and hyperresponsiveness by altering the production of mediators of the asthmatic inflammatory process in the airways (involving dendritic cells, macrophages, eosinophils, lymphocytes and mast cells), ultimately leading to improvement of symptoms and lung function (Yudt et al., 2002 and Barnes et al., 2005).

Glucocorticoids act by influencing gene transcription of molecules that are involved in the initiation and maintenance of the inflammatory response (Umland et al., 2002 and Pelaia et al., 2003).


Nowadays ICSs are believed to exert their effects after translocation into the nucleus of the respiratory epithelial cell and other cells in the airway, via the glucocorticoid receptor (GR) (*figure 1*) (Leung et al., 2003).

The GCS-GR complex, free from other proteins, enters the nucleus and binds to the DNA. There it affects gene transcription or modulates gene expression, thus altering protein synthesis. Release of the ligand (i.e. the GCS) from the GR causes the receptor to translocate back into the cytoplasm (*figure 2*) (Barnes et al., 2005).

Activated GR may bind to co-activators (e.g. cyclic adenosine monophosphate response element-binding protein) directly to inhibit their HAT activity thus reversing the unwinding of DNA around core histones and there by repressing inflammatory genes (Cerasoli et al., 2006).

Chapter1 3 ICS

Activated GR recruit histone deacetylase (HDACs) to the activated transcriptional complex, resulting in deacetylation of histones and thus a decrease in inflammatory gene transcription (Ito et al., 2000).

(*Figure 1*) effects ICSs via the glucocorticoid receptor adapted from (Umland et al., 2002).