

BEHAVIOR OF REINFORCED CONCRETE BEAMS STRENGTHENED WITH EXTERNALLY BONDED FIBER/STEEL REINFORCED POLYMERS AND GRANCRETE

By

JUDY MOHAMED IBRAHIM SOLIMAN

Bachelor of Science in Civil Engineering, with Honors (2005) Master Degree in Civil Engineering (2007)

> A Dissertation Submitted to the Faculty of Engineering at Ain Shams University in Partial Fulfilment of The Requirements of the Degree of

DOCTOR OF PHILOSOPHY

in Civil Engineering

Supervised By

Prof. Dr. Sami Hanna Rizkalla

Distinguished Professor
Department of Civil, Construction and Environmental Eng.
NC State University, Raleigh, NC, USA

Prof. Dr. Osama Hamdy Abdel Wahed

Professor of concrete structures Ain Shams University, Cairo, Egypt

Prof. Dr. Amr Ali Abdelrahman

Professor of concrete structures Ain Shams University, Cairo, Egypt

Assoc. Prof. Tarek Kamal Hassan

Associate Professor, Structural Eng. Dept. Ain Shams University, Cairo, Egypt

Cairo, Egypt 2012

Ain Shams University Faculty of Engineerung

Approval Sheet

Examining Committee

Student Name: Judy Mohamed Ibrahim Soliman

Thesis Title: Behavior of Reinforced Concrete Beams

Strengthened with Externally Bonded Fiber/Steel

Reinforced Polymers and Grancrete

Examiners Committee

Signature

Prof. Dr. Issam Harik

Kentucky University, USA

Prof. Dr. Mohamed El-Saiid Essa

Cairo University, Egypt

Prof. Dr. Sami Hanna Rizkalla

NC State University, USA

Prof. Dr. Amr Ali Abdelrahman

Ain Shams University, Egypt

جامعة عين شمس كلية الهندسة قسم إنشاءات

سلوك الكمرات الخرسانية المسلحة المدعمة خارجياً بإستخدام ألياف الصلب ومادة الجرانكريت

إعداد

المهندسة / جودى محمد إبراهيم سليمان

بكالوريوس الهندسة المدنية – مرتبة الشرف (إنشاءات) 2005 ماجستير الهندسة المدنية (إنشاءات) 2008 كلية الهندسة – جامعة عين شمس

رسالة مقدمة إلى كلية الهندسة – جامعة عين شمس كجزء من متطلبات الحصول على درجة الدكتوراة في الهندسة المدنية (إنشاءات)

تحت إشراف

أ.د. سامي رزق الله

أستاذ المنشأت الخرسانية المتفرغ كلية الهندسة – جامعة نورث كارولينا – الولايات المتحدة الأمريكية

أ.د. عمرو عبد الرحمن

أ.د. أسامة حمدى عبد الواحد

أستاذ المنشأت الخرسانية بقسم إنشاءات كلية الهندسة – جامعة عين شمس أستاذ المنشأت الخرسانية بقسم إنشاءات كلية الهندسة – جامعة عين شمس

أستاذ مساعد د. طارق كمال حسن

أستاذ مساعد المنشأت الخرسانية بقسم إنشاءات كلية الهندسة - جامعة عين شمس

القاهرة - 2012

ABSTRACT

Title of the : BEHAVIOR OF REINFORCED CONCRETE

Thesis BEAMS STRENGTHENED WITH EXTERNALLY

BONDED FIBER/STEEL REINFORCED

POLYMERS AND GRANCRETE

Submitted by : Judy Mohamed Ibrahim Soliman

Supervisors : Distinguished Prof. Dr. Sami Hanna Rizkalla

Prof. Dr. Osama Hamdy Abdel Wahed

Prof. Dr. Amr Ali Abdelrahman

Assoc. Prof. Dr. Tarek Kamal Hassan

Strengthening of reinforced concrete (RC) structures with externally bonded FRP composites has become very popular around the world over the past decade due to the well-known advantages of FRP composites over other materials. Advances in material science have led to the production of a novel patented material, commercially known as Grancrete. The material can be used as special cementitious materials for new constructions, repair of existing structural elements, sprayable coating for protection of structures from severe surrounding environmental conditions and for fire resistance applications. Using Grancrete as an adhesive material for the externally bonded fibres to concrete substrate allows increasing the strengthening limits in the current codes as

they are primarily based on the low fire resistance of Epoxy adhesives. Therefore, it is expected to lead to a more economical design and expand the service life of strengthened concrete structures.

The main objective of this research was to investigate and evaluate the effectiveness of the proposed fiber reinforced Grancrete (FRG) strengthening system, using Grancrete paste as an adhesive material for flexural strengthening of reinforced concrete beams with different types of externally bonded fibers (Basalt grid sheet, Steel reinforced polymers (SRP) and Carbon strands sheets). The thesis is extended to study the effect of different parameters believed to affect the bond characteristics among Grancrete, concrete and the different types of fibers. The main variables included the type and configuration of the strengthening scheme, Grancrete thickness, and presence of Uwraps. The experimental program undertaken in the current study consisted of three phases. The first phase was designed to obtain an optimum Water/Grancrete, W/G, ratio to be used in the mix design of Grancrete using compressions cubes. The second phase was designed to evaluate the bond strength of Grancrete with different strengthening systems including Basalt Grid, Steel Reinforced Polymers, etc. Different tests were conducted on concrete slabs measuring 600x600 mm to examine the bond characteristics of different strengthening schemes. The third phase focuses on real applications of Grancrete in flexural members. A total of thirty-two T-Section concrete beams were constructed and tested at the Structural Laboratory at Ain Shams University. The beams were strengthened using different FRP externally bonded

systems. The beams were tested using four point bending setup. Test results demonstrated that most of the specimens were likely to fail by debonding of the FRP from the concrete either at the ends or at intermediate flexural cracks. Due to the complexity of debonding failures, considerable uncertainty still exists with the failure mechanisms and the prediction of debonding failure loads. This research presents an in-depth study aimed at the development of a better understanding of debonding failures in strengthened with externally bonded FRP systems, using Basalt Grid sheets. No significant increase in load carrying capacity of the beam nor decrease in the maximum deflection were observed using Basalt Grid fibers. Using SRP sheets and Carbon strands sheets, the beams were most likely to fail due to sheet end debonding, the use of U-Wraps provides better results compared to the similar unconfined specimens and leads to a significant increase in the load carrying capacity of the strengthened beams which reached almost double the load carrying capacity of the control specimen.

Research findings indicate that published analytical approach of Malek et. al., 1998 for plate end debonding fibers can safely be used to predict the plate end debonding failure moments. The classical cracked section analysis method can be safely used to predict the ultimate flexural moments and deflections.

Rational model was developed to predict plate end debonding mechanism of Grancrete strengthened FRP systems. The model was validated with test results.

Keywords: beam, concrete, externally bonded FRP, Grancrete, SRP, Carbon Strands, Basalt Grid, strengthening, debonding.

Biography

Judy Soliman began her study of engineering in 2000 at the Faculty of Engineering, Ain Shams University, Egypt. In June 2005, she obtained her Bachelor of Science (B.Sc.) in Civil Engineering with honors. Upon graduation she was appointed as a teaching assistant at the Ain Shams University teaching Design of Reinforced Concrete Structures. She pursued her graduate studies at the Faculty of Engineering, Ain Shams University, Egypt. In January 2008 she earned her Master of Science (M.Sc.) degree in structural engineering. The title of her master thesis was "Bond Behaviour of High Strength and Corrosive Resistant Steel Reinforcement".

In October 2008, she pursued with her graduate studies leading to her Doctor of Philosophy degree in civil engineering. **STATEMENT**

This thesis is submitted to the Engineering Faculty of Ain

Shams University for the degree of Doctor of Philosophy in Civil

Engineering (Structural Engineering).

The work included in this thesis has been carried out by the

author in the department of Structural Engineering, Ain Shams

University, from October 2008 to May 2012.

No part of this thesis has been submitted for a degree or a

qualification at any other university or institution.

Date

06/05/2012

Signature :

Name

: JUDY MOHAMED IBRAHIM SOLIMAN

VI

Acknowledgement

First I would like to start by thanking God for his many blessings throughout my life and through whom everything is possible.

Next I would like to thank North Carolina State University for supplying the Grancrete, Carbon Strands and Basalt Grid used in this research.

It is with sincere gratitude that I thank my advisors, Prof. Dr. Amr Aly Abdel Rahman, Prof Dr. Ossama Hamdy and Dr. Tarek Hassan, for their guidance and their generous and continuous support. It is such a great honor to work with such exceptional men, who are willing to help, support and guide their students. Thanks are extended to Dr. Sami Rizkalla for his guidance throughout my studies and his advice as a member of my advisory committee.

I really want to thank the entire staff at the Structural Laboratory of Ain Shams University, especially Mr. Mahmoud Badr for his help with all aspects of this project. His assistance was invaluable in dealing with the details of laboratory testing. Mrs Magda and Mrs Wallaa can not be thanked enough for their constant presence and help with the intricacies of the administrative requirements.

Finally, I would like to express my appreciation to my unique Father, Mother, husband, sister, brother and children for the support they showed to me, their encouragement and unconditional love.

Dedication

To my parents
Who are the reason why I am everything I am
To my husband
For whom I am trying to be the best I can
To my lovely angels, Haya and Judy
My love for them is unconditional
Thank you.

Table of Contents

Chapter 1 1						
Introduction1						
1.1	ĺ	Background	. 1			
1.2	(Objectives	3			
1.3	;	Scope	4			
Ch	apte	r 2	6			
Stre	ength	ening of RC Structures with Fiber Reinforced Grancrete	6			
2.1	(Overview	6			
2.2	(Grancrete Material				
2.3	;	Strengthening of Concrete Beams1	5			
	2.3.	Concrete Beams Strengthened with Steel Plates1	5			
	2.3.2	2 Concrete Beams Strengthened with FRPs1	8			
2.4	;	Strengthening with FRP Laminates2	23			
	2.4.	1 FRP Sheets used in this study2	23			
2.5	I	FRP Strengthening Techniques2	29			
	2.5.	1 Wet Lay-up Systems2	29			
	2.5.2	Near-Surface-Mounted System (NSM)3	30			
	2.5.3	3 Mineral Based Composites (MBC)	31			

2.6	Force Transfer Mechanism32		
2.7	Effect of Surface Preparation on Bond Performance3		
2.8	Fa	ilure Modes of FRP Strengthened Beams	34
2.9	An	alysis of FRP Strengthened Concrete Beams	40
	2.9.1	Peeling Stresses at Grancrete interface	42
	2.9.2	Malek et al., 1998 Model	42
2.10	Fle	exural Analysis of FRP Strengthened Beams	52
Cha	pter	3	56
Ехре	Experimental Program		
3.1	De	esign of The Experimental Program	56
3.2	Te	st Specimens	57
3.3	Fa	brication of Specimens	62
3.4	Fik	per Reinforced Grancrete (FRG)	64
3.5	Gr	ancrete Paste [Phase I]	67
3.6	Во	nd Characteristics [Phase II]	69
;	3.6.1	Pull-off Test Specimens	70
;	3.6.2	Pull-off Test Setup	74
3.7	Ma	aterials	75
;	3.7.1	Concrete	75
,	3.7.2	Mild Steel	76
;	3.7.3	Strengthening Sheets	76
3.8	RC	C - Beam Specimens [Phase III]	81

	3.8.1	Externally Bonded Specimens	82
	3.8.2	Near Surface Mounted Specimens	88
3.9	Ins	trumentation	89
	3.9.1	Electrical Strain Gages	89
	3.9.2	Deflections	91
	3.9.3	Concrete strains	91
3.10) Te	st Set-up	92
3.11	1 Te	st Procedure	93
Ch	apter 4	1	94
Tes	t Result	s9	94
4.1	Co	ntrol Beams	95
4.2	Ba	salt sheet & Grancrete	99
	4.2.1	Load-Deflection10	00
	4.2.2	Crack Pattern10	04
	4.2.3	Measured Strains in the Basalt Sheet10	09
	4.2.4	Mode of Failure1	14
4.3	SR	P sheet & Grancrete1	17
	4.3.1	Load-Deflection	20
	4.3.2	Crack Pattern12	26
	4.3.3	Measured Strains in SRP sheet13	34
	4.3.4	Mode of Failure19	52

4.4	Ca	rbon Strands sheet & Grancrete16	1
	4.4.1	Load-Deflection16	4
	4.4.2	Crack Pattern17	0
	4.4.3	Mode of Failure	2
Ch	apter (5 19	0
Ana	llysis of	Test Results19	0
5.1	Te	sted Beams19	0
5.2	Во	nd Analysis19	3
	5.2.1	The First failure mode:- Peeling of Grancrete19	6
	5.2.2	The Second failure mode:- Debonding of the sheet at th	е
	Concr	ete level19	7
	5.2.3	The Third failure mode:- Debonding of the sheet at the Grancret	е
	level	20	0
5.3	Fle	exural Analysis20	5
5.4	De	flection21	0
Ch	apter (6 22	4
Sun	nmary a	and Conclusions22	4
6.1	Ov	erview22	4
6.2	Co	nclusions22	6
6.3	Re	commendations for Further Research23	7
Ref	ference	es23	8

List of Tables

Table 2-1: Grancrete Vice Portland Cement (Montesdeoca Solorzano, 2008)
13
Table 2-2: Grancrete vice Portland Cement (Montesdeoca Solorzano, 2008)
14
Table 3-1: Test Matrix61
Table 3-2: Compression Test Results of Grancrete Cubes69
Table 3-3: Mechanical Properties of Basalt Grid77
Table 3-4: Mechanical Properties of SRP79
Table 3-5: Mechanical Properties of individual Carbon Stand81
Table 4-1: Strengthening details of the beams Strengthened using Basalt
sheets and Grancrete
Table 4-2: Strengthening details of the tested beams using SRP sheets and
Grancrete118
Table 4-3: Experimental results for Beams strengthened with SRP sheet and
Grancrete119
Table 4-4: Initiation of different types of cracks for beams strengthened with
SRP sheet and Grancrete
Table 4-5: Strengthening details of the tested beams using Carbon Strands
and Grancrete162
Table 4-6: Experimental readings for Beams strengthened with Carbon
Strands sheet and Grancrete163