EFFECT OF NURSING SYSTEM AND BIOSTIMULATION ON RABBIT DOES PRODUCTIVITY UNDER EGYPTIAN ENVIRONMENTAL CONDITIONS

By Nagah Mohamed El-Sayed Hawash

B.Sc. Agric. Cooperative Sci., Higher Institute for Agric. Cooperation, 2003

A thesis submitted in partial fulfillment of the requirement for the Master Degree

in

Environmental Science
Department of Environmental Agricultural Sciences
Institute of Environmental Studies and Research
Ain Shams University

2012

APPROVAL SHEET

EFFECT OF NURSING SYSTEM AND BIOSTIMULATION ON RABBIT DOES PRODUCTIVITY UNDER EGYPTIAN ENVIRONMENTAL CONDITIONS

By Nagah Mohamed El-Sayed Hawash

B.Sc. Agric. Cooperative Sci., Higher Institute for Agric. Cooperation, 2003

This Thesis Towards a Master of Environmental Science Has Been Approved by:

Name Signature

1- Prof. Dr. Gamal Ashour Hassan

Professor of Animal Physiology Faculty of Agriculture Cairo University

2- Prof. Dr. Esam El-Din Tharwat Mohamed

Professor of Animal Physiology Faculty of Agriculture Ain Shams University

3- Prof. Dr. Mohamed Mohamed Sabrah

Professor of Animal Physiology Faculty of Agriculture Ain Shams University

4- Prof. Dr. Essmat Bakry Abdalla

Professor of Animal Physiology Faculty of Agriculture Ain Shams University

EFFECT OF NURSING SYSTEM AND BIOSTIMULATION ON RABBIT DOES PRODUCTIVITY UNDER EGYPTIAN ENVIRONMENTAL CONDITIONS

By

Nagah Mohamed El-Sayed Hawash

B.Sc. Agric. Cooperative Sci., Higher Institute for Agric. Cooperation, 2003

A thesis submitted in partial fulfillment of the requirement for the Master Degree in Environmental Science Department of Environmental Agricultural Sciences

Under the supervision of:

1- Prof. Dr. Essmat Bakry Abdalla

Professor of Animal Physiology Faculty of Agriculture Ain Shams University

2- Prof. Dr. Farouk Abdalla El Sayed Khalil

Professor of Animal Physiology Faculty of Agriculture Ain Shams University

3- Prof. Dr. Mohamed Mohamed Sabrah

Professor of Animal Physiolog Faculty of Agriculture Ain Shams University

تأثير نظاء الرضاعة والتنبية الحيوى على إنتاجية أممات الأرانب تحت الظروف البيئية المصرية

رسالة مقدمة من الطالب نجاح محمد السيد حواش بكالوريوس علوم تعاونية زراعية، المعهد العالى للتعاون الزراعي، ٢٠٠٣

لاستكمال متطلبات الحصول علي درجة الماجستير في العلوم البيئية

> قسم العلوم الزراعية البيئية معهد الدراسات والبحوث البيئية جامعة عين شمس

تأثير نظاء الرضاعة والتنبية الحيوى على إنتاجية أممات الأرانب تحت الظروف البيئية المصرية

رسالة مقدمة من الطالب نجاح محمد السيد حواش بكالوريوس علوم تعاونية زراعية، المعهد العالى للتعاون الزراعي، ٢٠٠٣

لاستكمال متطلبات الحصول علي درجة الماجستير في العلوم البيئية قسم العلوم الزراعية البيئية

تحت إشراف:

+ ا.د/ عصمت بكرى عبد الله أستاذ فسيولوجيا الحيوان . قسم الإنتاج الحيواني . كلية الزراعة جامعة عين شمس

- ١.د/ فاروق عبد الله السيد خليل
 أستاذ فسيولوجيا الحيوان . قسم الإنتاج الحيواني . كلية الزراعة
 جامعة عين شمس
- * ا.دم/حمد محمد محمد صبر ه أستاذ فسيولوجيا الحيوان . قسم الإنتاج الحيواني . كلية الزراعة جامعة عين شمس

ختم الإجازة أجيزت الرسالة بتاريخ / /٢٠١٢ موافقة مجلس المعهد موافقة الجامعة / /٢٠١٢

ABSTRACT

To study the effect of nursing system and bio-stimulation on rabbit does productivity under Egyptian environmental conditions, a total of 199 mother does and 20 bucks were used. Two different groups of does (G2 and G4) in comparison with the other two groups (G1 and G3) were used in this study. Primiparous New Zealand White (NZW) rabbit does were distributed among four experimental groups, containing 50, 50, 0 and 49 does, respectively. In control group (G1) mothers were free nursing from kindling till weaning (30days); (G2) mothers were free nursing for 9 days, then separated from their litters for 48 hours(bio-stimulation) then artificially inseminated (AI), after insemination, mothers were controlled nursing (i.e. nursing their litters only one time daily) till day 16 and free nursing till day 30; (G3) mothers were controlled nursing from kindling to day 9, then left free nursing till day 30; (G4) mothers were controlled nursing from kindling to day 16, then free nursing till day 30, mother litter separation was applied in this group as mentioned before in the second group. All groups were artificially inseminated on day 11 post-kindling.

The results of this study concerning the receptivity percentage were 25.5, 69, 36.5 and 73.3 and for the fertility percentage were 21.8, 59.3, 30.2 and 66.9 in G1, G2, G3 and G4 respectively. This indicates that G2 and G4 were higher than G1and G3 in receptivity and fertility. Present results also showed that fertility rate in does was not clearly related with parity, however the higher value was detected in the sixth parity in G1 and G3 and the second parity in G2 and G4 groups.

It is concluded that mother-litter separation preceded and followed by controlled nursing can improve rabbit doe fertility.

Regarding litter size, still birth and mortality rate during lactation period, no significant differences were detected among

different treatments except mortality rate at the second week of lactation which recorded significant (P<0.05) differences among groups. In all treatments, mortality rate of litter decreased with the advancement of lactation period, especially at the third and fourth week of lactation. Litter birth weight was not significantly influenced by treatments, while litter weights at 2weeks of age and at weaning were significantly (P<0.05) influenced by treatments being lower in G2 and G4 then G1 and G3. Similar trend was observed in the milk production, parity may be had no significant effect on litter birth and weaning weights while had significant effect (P<0.05) on the milk yield at the first week of lactation.

CONTENTS

	Page
1-INTRODUCTION	1
2- REVIEW OF LITERATURE	3
2-1 Effect of doe-litter separation	3
2-2 Fertility and receptivity	4
2-3 Litter size and the weight from kindling to weaning and mortality rate.	7
2-4 Milk production.	9
3- MATERIAL AND METHODS	12
3-1 Experimental rabbits	12
3-2 Management and feeding	12
3-2-1 Housing	12
3-2-2- Rabbitry environment	12
3-2-3 Feeding and watering	13
3-3 Experimental design	14
3-4 Semen collection and insemination	16
3-5 Determination of rabbits performance	16
3-5-1 does' performance	16
3-5-1-1 Sexual receptivity rate	16
3-5-1-2 Fertility rate	16
3-5-1-3 Milk production	16
3-5-2 Litter performance	17
3-5-2-1 Litter size	17
3-5-2-2 Litter weight	17
3-5-2-3 Still birth	17
3.5.2.4. Mortality rate	17
3-5-3 Buck's performance	17
3-5-3-1 Ejaculation volume	17
3-5-3-2 Sperm concentration	17

	Page
3-5-3-3 Sperm motility	17
3-6 Statistical analysis	18
4- RESULTS AND DISCUSSION	19
4-1- Does performance	19
4-1-1 Sexual receptivity rate	19
4-1-2 Fertility rate	22
4-2. Litter performance	25
4-2-1. Litter size	25
4-2-1.1. Litter size at birth	25
4-2-1.2 Still birth	27
4-2-1.3 Litters size at weaning	28
4-2-2 Mortality rate of litter during lactation period	28
4-2-3- Litter weight	30
4-2-3-1. Litter weight at birth	30
4-2-3-2. Litter weight at 2 nd week	30
4-2-3-3 Litter weight at weaning	30
4-3. Milk production	33
5- SUMMARY	39
6- CONCLUSION	43
7- REFERENCES	44
8- ARARIC SUMMARY	

LIST OF TABLES

	Page
1- Composition and chemical analysis of the experimental ration.	13
2- Receptivity rate (%) of NZW rabbit does as affected by nursing and bio-stimulation method at different	
parities	20
3- Fertility rate (%) of NZW rabbit does as affected by nursing and bio stimulation method at different	
parities	23
4- Litter size and mortality rate as affected by treatment at	
different parities in rabbit does	26
5- Average litter weight at birth, 2 nd week and at weaning weights (g) as affected by treatment or parity in rabbit	
does.	31
6- Milk production (g) as affected by treatment at	
different parities in rabbit does	34

LIST OF FIGURS

	Page
1- A schema for experimental treatments	15
2- Over all means of receptivity rate (RR) of NZW rabbit	
does as affected by nursing and doe-litter separation	
methods.	21
3- Over all means of receptivity rate (RR) of NZW rabbit	
does during the successive parities	21
4- Over all means of fertility rate (FR) of NZW rabbit	
does as affected by nursing and doe-litter separation	
methods.	24
5- Over all means of fertihity rate (FR) of NZW rabbit	
does during the successive partities.	24
6- Litter size at birth (LSB) and at weaning (LSW) of	
NZW rabbit does during the successive parities	25
7- Still birth (SB) in NZW rabbit does as affected by	
nursing and doe-Litter separation method	27
8- Still birth (SB) in NZW rabbits during the successive	
parities	28
9- Total mortality rates (TMR) of NZW rabbit as affected	
by nursing and doe litter separation methods	29
10- Total mortality rates (TMR) of NZW rabbit does'	
litter as affected by parity orders	29
11- Total litters' weight at birth (LWB), at the 2 nd week	
(Lw-2week) and at weaning (Lww) during the	
successive parties	32
12- Endividual litters' weight at birth (LWB), at the 2 nd	
week (LW-2 week) and at weaning (LWW) during	
the successive parities	32
13- Over all means of individual litters weight at birth	33

	Page
(LWB) and at 2 nd week (LW- 2 week) and at weaning	
(LWW).	
14- Daily milk production (DMP) of NZW rabbit does	
during the successive partities at the first week of	
lactation	35
15- Daily milk production (DMP) of Nzw rabbit does	
during the successive parities at the second week of	
lactation	35
16- Daily milk production (DMP) of NZW rabbit does	
during the successive partities at the third week of	
lactation	36
17- Daily milk production (DMP) of NZW rabbit does	
during the successive parities at the fourth week of	
lactation	36
18- Daily milk production (DMP) of NZW rabbit does as	
affected by nursing system and doe-litter separation	
during the successive week of lactation period.	37
19- Over all means of milk production (MP) of NZW	
rabbit does at the successive weeks of lactation	
period.	37
20- Pattern of milk production (MP) of NZW rabbit does	
at the successive weeks of lactation period.	38

LIST OF ABBREVIATION

AI Artificial insemination

CF Crude fiber

Con Control

CR Conception rate

DAI Delayed artificial insemination

DE Digestible energy**DLS** doe-litter separation

EE Ether extract

FSH Follicle stimulating hormone

G1 Free nursing from kindling to weaning

G2 Free nursing from kindling to the 9th day and from day

16 to 30 and separated from day 9 to day 11

G3 control nursing from kindling till the 9th day then

separation for 48h, then free nursing till weaning age

G4 Control nursing for 48h, then free nursing till weaning

age

GnRH Gonadotropin Releasing hormone

H-P-A Hypothalamo-pituitary axisHPG Hypothalamus- pituitary gonad

LH Luteinizing hormoneLSW Litter size at weaningLSB Litter size at birth

NZW New Zealand White
NLD Non lactating does

P.P post-partum

PMSG Pregenat mare serum gonadotropin

R-DLS Regular doe-litter separation for 48h

(R-) Non receptive does

S-DLS Split doe-litter separation for 48h

TMR Total mortality rate

MR Mortality rate

RR Receptivity rate (%)
FR Fertility rate (%)

SB Still births

E₂ Estradiol hormone

P4 Progesterone hormoneDMP Daily milk productionTMP Total milk production

INTRODUCTION

As result of increasing people in the world especially in the developing countries, there is an increasing demand on animal protein. Rabbit production has potential importance in developing countries as a mean of supplying cheap and high quality animal protein within the shortest possible time. Moreover, the average production of one female is about 35 kg of meat (comes from 60 kg live body weight of her off spring) each year (Wiittouk *et al.*, 1992), which is more than one ewe production. Furthermore, rabbit meat is poor in calories and rich in protein. Moreover, the lipid fraction of rabbit meat is high in polyunsaturated fatty acids and especially in linoleic and linotenic acids (Wittouk *et al.*, 1992). Also, rabbit meat is the lower energy (160 k cal), the lower fat (8%), the lower in sodium rate (40 Ml gm/10 gm of meat) and the highest in protein (21%), the highest in calcium (20 ml gm/100 gm) in comparison with other animals. These properties of rabbit meat create an interesting dietic function in human alimentation.

Recently, research has been focused to improve rabbit doe production of litter per year through the definition of optimal time for insemination after kindling. Moreover, studying and evaluating the different mother doe nursing systems and the success of doe-Litter separation (Dls) in relation to artificial insemination (AI) and the using method of controlled nursing (Eibin *et al.*, 2004). Bio-stimulation technique is performed through complete separation between nursing mothers and their litters for 48h before AI, which consequently decreases the hormones responsible for lactation and increases the hormones responsible for ovarian follicular growth and reproductivity. Finally, this method is easy to be applied, inexpensive, consistent with animal welfare and adapts with cycled production. So, the objective of this study was