IMPACT OF SOME POLLUTANTS ON THE SKIN AND COAT CHARACTERISTICS OF SHEEP RAISED IN SOME LOCATIONS AT EL-SALAM CANAL

A Thesis Submitted for the Award of
The Degree of Doctor of Philosophy
In
Zoology (Histology)

BY

NAGLAA SALEM BADAWY

B.Sc. (Zoology – Chemistry), Ain Shams UniversityM. Sc. In Zoology (Histology). Faculty of Science,Ain Shams University

Supervision by

Dr. Abdalla Mohamed Ibrahim

Prof. of Zoology
Faculty of Science, Ain Shams University

Dr. Aisha S. Abdou

Professor and head of wool production and technology department,

Desert Research Center

Department of Zoology
Faculty of Science
Ain Shams University
Cairo, Egypt
2011

تأثير بعض الملوثات علي خصائص جلد وغطاء الأغنام المرباة في بعض المناطق بترعة السلام

رسالة مقدمة إلى

قسم علم الحيوان كلية العلوم جامعة عين شمس

للحصول على درجة دكتوراه الفلسفة في العلوم (في علم الحيوان-هستولوجي)

مقدمة من نجلاء سالم بدوى بكالوريوس علوم جامعة عين شمس ماجستير في العلوم كلية العلوم جامعة عين شمس

تحت إشراف الدكتور عبد الله محمد إبراهيم أستاذ علم الحيوان غير المتفرغ كلية العلوم جامعة عين شمس

أ.د. عائشة سبيد عبده أستاذ ورئيس قسم إنتاج وتكنولوجيا الصوف شعبة الإنتاج الحيواني والدواجن مركز بحوث الصحراء

قسم علم الحيوان كلية العلوم جامعة عين شمس ٢٠١١

ACKNOWLEDGEMENT

First of all, thanks to Mighty GOD (ALLAH) for the continuous and persistent supply with patience and effort to produce this study.

I wish to express my deep gratefulness and appreciation to **Prof. Dr.**Abdalla Mohamed Ibrahim, Prof. of zoology and aquatic biology. Zool.

Dept., Fac. of Science, Ain Shams University, for his kind supervision, valuable criticism and critical reading of the manuscript. His efforts are greatly acknowledged and deeply appreciated.

My sincere gratitude is also due to **Prof. Dr. Aisha S. Abdou** Professor and head of wool production and technology department, Animal Production Division, Desert Research Center for her able guidance, suggesting the point and valuable guidance. Her continuous encouragement, unlimited help and reviewing the manuscript, her efforts are greatly acknowledged and deeply appreciated.

I wish to express my sincere appreciation to all the professors and researchers who have helped me along the way with encouragement and discussion. To everyone helped me in tackling various problems during my study and for giving me the opportunity to conduct this research. Without their help and support, this work would not have been possible.

Thanks are due to all staff members and workers of Wool Production & Technology Department, Desert Research Center, who facilitated the practical part of this study through their sincere cooperation, especially Mr. Sameh Taha, for his help in the statistical analysis of data, and in the work of the computer and to Mr. Eid M. Abd-El-Hady, and Dr. Eman Ezat for their effort throughout the field work.

My thanks and deep appreciations are extended to my late parents and to my husband, daughters and son for their constant patience, encouragement and moral of support.

ABSTRACT

"IMPACT OF SOME POLLUTANTS ON THE SKIN AND COAT CHARACTERISTICS OF SHEEP RAISED IN SOME LOCATIONS AT EL-SALAM CANAL"

This study was carried out on thirty five adult Balady ewes that were randomly chosen from three different regions at El-Salam Canal North Sinai (10 ewes from both El Qantara Shark and Romana regions, and 15 ewes from Gelbana region) in both summer and winter seasons. Animals were kept under the prevailing environmental conditions and were usually allowed to go to pasture early in the morning and to return at sunset. On pasture, animals were fed on cultivated plants and drinking from El-Salam Canal water.

The present study was undertaken to investigate the chemical characteristics of the canal water used for irrigation, drinking and domestic purposes and to assess the levels of seven heavy metals (Cd, Cu, Fe, Mn, Mo, Pb and Zn) in such water, vegetation and blood serum to evaluate the effect of these parameters on the morphological structure, chemical composition and growth activity of different skin components of sheep raised in the three studied regions at El-Salam Canal.

Skin and fibre samples as well as water, plants and blood samples were taken twice a year, representing summer and winter seasons. The skin samples were taken from the mid-side region and the skin components were examined by histological and histochemical techniques.

The fibre samples were classified into four categories (Kemp, hetero, coarse and fine fibres).

Analysis of water samples revealed high levels of EC, TDS, Na, Mg, and Cl ions that exceed the permissible limits of **WHO** (1993).

Concerning Cd, Cu, Mn ,Mo and Zn metals, all examined water samples had lower values than the permissible limits accounted by **WHO** (2004). Meanwhile, Fe and Pb exceeded the permissible limits.

Samples also recorded lesser values than the recommended limits in irrigation water detected by **Crook (1996)** except Mo in Romana region in summer season.

Lower levels of copper metal were reported in the plant tissues of all the studied regions in winter season.

The increased salts in samples of drinking water resulted in significant decrease in the glucose level and inhibition in ALP activity in the serum of sheep but elevated total lipids. The presence of cadmium metal increased plasma glucose and decreased blood total protein and serum alkaline phosphatase enzyme, while the presence of Pb caused decreasing in blood total protein and increasing ALP enzyme. The elevated dietary copper in summer season caused significant increase in serum TL in animals at the three regions especially in Romana region.

The high level of salts in drinking water caused a decrease in all follicle dimensions. The histological measurements taken for sweat glands proved that their size increased significantly in summer than in winter.

As a result of increasing dietary concentrations of Mn in Romana and Gelbana regions, the content of carbohydrates in the two sheaths of both primary and secondary follicles recorded significant increase than in El-Qantara Shark region.

Increasing levels of dietary Zn caused high content of general protein and higher activity of ALP enzyme in the skin follicles of sheep.

Animals in Romana region which received high levels of salts in drinking water had a significant decrease in fibre diameter than those of the other two regions, while Gelbana region recorded the highest greasy fleece weight.

The percentage of coarse fibres increased in summer season, while the fine fibres showed an opposite trend. Also the coat of animals showed longest fibres in winter season compared with summer except kemp fibres.

The deficiency in copper metal caused a significant decrease in the mean number of fibre crimps/centimeter in El- Qantara Shark and Gelbana regions rather than in Romana region.

It can be concluded that the examined samples of El-Salam Canal water, plants, animals serum, skin and wool fibres from the examined areas include a variety of metal pollutants that need an urgent treatment and management.

Key words:

El-Salam Canal, water, plants, blood serum, sheep skin, wool follicles, wool fibres, sweat glands, histology, histochemistry.

Contents	Page
Abstract	
CHAPTER I: INTRODUCTION AND AIM OF THE STUDY	1
CHAPTER II: REVIEW OF THE LITERATURE	5
1- El-Salam Canal water	5
1.1. Routine analysis	5
1.2. Heavy metals	14
2- Heavy metals in plants	18
3- Heavy metals in animal's serum	30
4- Biochemistry of blood	36
4.1. Serum glucose	36
4.2. Serum total protein (TP)	37
4.3. Serum total lipids (TL)	39
4.4. Serum alkaline phosphatase enzyme (ALP)	39
5 - General anatomy of the skin	40
5.1. Histological structure of the skin	40
5.2. Histochemical investigations of sheep skin	49
6- Heavy metals in animal's skin	
7- Wool fibres	
8- Heavy metals in wool fibres	
CHAPTER III: MATERIALS AND METHODS:	69
1- Study area	69
2- El-Salam Canal project description	70
3- Water samples	72
3.1. Routine analysis	72
3.2. Heavy metals analysis	73
4- Forage sampling	73
5-Study animals	75
5.1. Serum samples	75
5.1.1. Serum heavy metals	76
5.1.2. Biochemistry of serum	75
5.1.2.1. Glucose in serum	75

Contents	Page
5.1.2.2. Total protein in serum	76
5.1.2.3. Total Lipids in serum	76
5.1.2.4. Alkaline phosphatase in serum	76
5.2. Skin and wool samples	77
5.2.1. Skin samples	77
5.2.2. Wool samples	78
5.2.3. Greasy fleece weight	79
6- Statistical analysis	79
CHAPTER IV: RESULTS	80
1-Analysis of El-Salam Canal water	80
1.1- Routine analysis	80
1.2-Heavy metals	84
2- Plant analysis	87
3- Serum analysis	
3.1- Heavy metals in sheep serum	
3.2- Serum biochemical parameters	
3.2.1. Glucose	
3.2.2.Total protein	
3.2.3.Total lipids	
3.2.4. Alkaline phosphatase	95
4- Skin of sheep	
4.1. Types of the wool follicles	95
4.1.1. Secondary to primary follicles ratio (S/P ratio)	96
4.1.2. The Bulb	96
4.2. Follicle dimensions	97
4.2.1. External diameter of primary and secondary wool follicles	98
4.2.2. Internal diameter of primary and secondary wool follicles	
4.2.3. Wall thickness of the primary and secondary wool follicles	100
4.3. Glands of the skin	100
4.3.1. Sweat glands	100

Contents	
4.3.2. Sebaceous glands	101
4.4. Histochemistry of the wool follicles and glands	
4.4.1. General carbohydrates (PAS reaction)	102
4.4.2. General proteins	104
4.4.3. Alkaline phosphatase enzyme	106
5- Wool fibres	108
5.1.1. Fibre diameter of the primary and secondary wool follicles	109
5.1.2. Medulla thickness	110
5.2. Fibre type ratio	111
5.2.1. Kemp fibres:-	
5.2.2. Hair or coarse and hetero fibres	
5.2.3. Fine or wool fibres	
5.3. Number of crimps/cm	
5.4. Greasy fleece weight	
CHAPTER V: DISCUSSION	221
CHAPTER VI: SUMMARY AND CONCLUSION	
CHAPTER VII: REFERENCES	
الملخص العربي المستخلص	
المستخلص	

LIST OF TABLES

No	Title	Page
Table (1):	Types of forages collected from the three studied	
	regions during summer season.	74
Table (2):	Types of forages collected from the three studied	
	regions during winter season.	75
Table (3):	Chemical analysis (ppm) of water samples at the	
	three different regions of El-Salam Canal during	
	summer and winter seasons.	115
Table (4):	Chemical analysis of some heavy metals (ppm) in	
	water samples at the three different regions of El-	
	Salam Canal during summer and winter seasons.	119
Table (5):	Analysis of variance of concentrations of some	
	heavy metals in plant tissues at the three different	
	regions of El-Salam Canal during summer and	
	winter seasons.	122
Table (6):	Mean concentrations (±SE) of some heavy metals	
	(ppm) in plant tissues at the three different regions	
	of El-Salam Canal during summer and winter	
	seasons.	123
Table (7):	Analysis of variance of concentrations of some	
	heavy metals in serum samples from sheep raised at	
	the three different regions of El-Salam Canal during	
	summer and winter seasons.	126
Table (8):	Mean concentrations (±SE) of some heavy metals	
	(ppm) in serum samples from sheep raised at the	
	three different regions of El-Salam Canal during	10-
m 11 (2)	summer and winter seasons.	127
Table (9):	Analysis of variance of concentrations of serum	
	chemistry from sheep raised at the three different	
	regions of El-Salam Canal during summer and	120
	winter seasons.	130

No	Title	Page
Table (10):	Mean values of serum biochemistry (±SE) for sheep	
	raised at the three different regions of El-Salam	
	Canal during summer and winter seasons.	131
Table (11):	Analysis of variance of the secondary to primary	
	follicles (S/P) ratio in the skin of sheep raised at the	
	three different regions of El-Salam Canal during	
	summer and winter seasons.	138
Table (12):	Mean values (±SE) of the ratio of secondary to	
	primary follicles (S/P) in the skin of sheep raised at	
	the three different regions of El-Salam Canal during	
	summer and winter seasons.	139
Table (13):	Analysis of variance for different factors affecting	
	the DNA values in the bulb of the Primary and	
	secondary wool follicles in the skin of sheep raised	
	at the three different regions of El-Salam Canal	
	during summer and winter seasons.	144
Table (14):	Seasonal distribution of DNA in the bulb of the	
	primary and secondary wool follicles in the skin of	
	sheep raised at the three different regions of El-	
	Salam Canal during summer and winter seasons	
	(expressed as percentages of optical density values).	145
Table (15):	Analysis of variance for different factors affecting	
	the primary follicle dimensions, fibre diameter and	
	medulla thickness in the skin of sheep raised at the	
	three different regions of El-Salam Canal during	
	summer and winter seasons.	150
Table (16):	Analysis of variance for different factors affecting	
	the secondary follicle dimensions and fibre diameter	
	thickness in the skin of sheep raised at thethree	
	different regions of El-Salam Canal during summer	
	and winter seasons.	151

No	Title	Page
Table (17):	Mean values of external diameter of both primary	
	and secondary wool follicles ($\mu m \pm SE$) in the skin	
	of sheep raised at the three different regions of El-	
	Salam Canal during summer and winter seasons.	153
Table (18):	Mean values of internal diameter of both primary	
	and secondary wool follicles ($\mu m \pm SE$) in the skin	
	of sheep raised at the three different regions of El-	
	Salam Canal during summer and winter seasons.	154
Table (19):	Mean values of wall thickness of both primary and	
	secondary wool follicles ($\mu m \pm SE$ in the skin of	
	sheep raised at the three different regions of El-	
	Salam Canal during summer and winter seasons.	156
Table (20):	Analysis of variance for different factors affecting	
	the sweat gland thickness of sheep raised at the three	
	different regions of El-Salam Canal during summer	
	and winter seasons.	158
Table (21):	Mean values of the sweat glands thickness (μm	
	\pm SE) in the skin of sheep raised at the three different	
	regions of El-Salam Canal during summer and	4.50
	winter seasons	159
Table (22):	Analysis of variance for different factors affecting	
	the general carbohydrate values in the outer and	
	inner root sheaths of both primary and secondary	
	wool follicles in the skin of sheep raised at the three different regions of El-Salam Canal during summer	
	and winter seasons.	164
Table (23):	Seasonal distribution of general carbohydrates in the	
10013 (25).	outer and inner root sheathes of primary and	
	secondary wool follicles in the skin of sheep raised	
	at the three different regions of El-Salam Canal	
	during summer and winter seasons (expressed as	
	percentages of optical density values).	165

No	Title	Page
Table (24):	Analysis of variance for different factors affecting	
	the general carbohydrate values in the sweat and	
	sebaceous glands in the skin of sheep raised at the	
	three different regions of El-Salam Canal during	
	summer and winter seasons.	171
Table (25):	Seasonal distribution of general carbohydrates in the	
	sweat and sebaceous glands in the skin of sheep	
	raised at the three different regions of El-Salam	
	Canal during summer and winter seasons (expressed	
	as percentages of optical density values).	172
Table (26):	Analysis of variance for different factors affecting	
	the general protein values in the primary and	
	secondary wool follicles in the skin of sheep raised	
	at the three different regions of El-Salam Canal	
	during summer and winter seasons.	177
Table (27):	Seasonal distribution of general proteins in the outer	
	and inner root sheathes of the primary and	
	secondary wool follicles in the skin of sheep raised	
	at the three different regions of El-Salam Canal	
	during summer and winter seasons (expressed as	
	percentages of optical density values).	178
Table (28):	Analysis of variance for different factors affecting	
	the general protein values in the sweat and	
	sebaceous glands in the skin of sheep raised at the	
	three different regions of El-Salam Canal during	
	summer and winter seasons.	184
Table (29):	Seasonal distribution of general proteins in the	
	sweat and sebaceous glands in the skin of sheep	
	raised at the three different regions of El-Salam	
	Canal during summer and winter seasons (expressed	
	as percentages of optical density values).	185

No	Title	Page
Table (30):	Analysis of variance for different factors affecting	
	the alkaline phosphatase activity in the outer and	
	inner root sheathes of the primary and secondary	
	wool follicles in the skin of sheep raised at the three	
	different regions of El-Salam Canal during summer	
	and winter seasons.	190
Table (31):	The alkaline phosphatase activity in the outer and	
	inner root sheathes of the primary and secondary	
	wool follicles in the skin of sheep raised at the three	
	different regions of El-Salam Canal during summer	
	and winter seasons (expressed as percentages of	
	optical density values).	191
Table (32):	Analysis of variance for different factors affecting	
	the alkaline phosphatase activity in the sweat and	
	sebaceous glands in the skin of sheep raised at the	
	three different regions of El-Salam Canal during	
	summer and winter seasons.	197
Table (33):	The alkaline phosphatase activity of the sweat and	
	sebaceous glands in the skin of sheep raised at the	
	three different regions of El-Salam Canal during	
	summer and winter seasons (expressed as	
	percentages of optical density values).	198
Table (34):	Analysis of variance for different factors affecting	
	the primary fibre diameter and medulla thicknesses	
	in the skin of sheep raised at the three different	
	regions of El-Salam Canal during summer and	
	winter seasons.	202
Table (35):	Analysis of variance for different factors affecting	
	the secondary fibre diameter thickness in the skin of	
	sheep raised at the three different regions of El-	
	Salam Canal during summer and winter seasons.	203