

The Protective Role of Hesperidin against Some Biochemical and Trace Element Changes Induced by Gamma Radiation and / or Acrylonitrile in Rats

A thesis

Submitted for the award of the degree of Ph.D. in Biochemistry

Presented By

Marwa Abd El hameed Mohamed

M.Sc. in Biochemistry, 2008
Assistant Lecturer at National Center for Radiation Research and Technology
(NCRRT)
Atomic Energy Authority (AEA)

Under supervision of

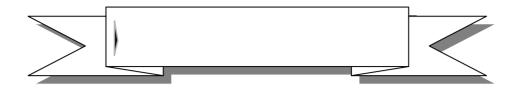
Prof. Dr./ Nadia Mohamed Abdallah

Professor of Biochemistry
Faculty of Science
Ain Shams University

Prof. Dr./ Mohamed Ragaa Mohamed

Professor of Biochemistry Faculty of Science Ain Shams University

Prof. Dr./ Nour El-Din Amin


Professor of Biological Chemistry
National Center for Radiation
Research and Technology
Atomic Energy Authority

Prof. Dr./ Ahmed Shafik Nada

Professor of Physiology National Center for Radiation Research and Technology Atomic Energy Authority بسم الله المرحمن الرحيم والوا سبحانك لا علم لنا إلا ما علمتنا إنك أنث العليم الحكيم الحكيم الحكيم الحكيم الحكيم الحكيم الحكيم الحكيم الحكيم العليم الحكيم العليم الحكيم العليم الحكيم العليم الحكيم العليم الحكيم العليم الحكيم ا

عدق الله العظلم

آية (٣٢) سورة البقرة

I am deeply indebted to *Allah*, the most merciful for guiding me through and giving me the strength to complete this work.

It has been such an honour working with knowledgeable people throughout the development of this thesis. There are a number of individuals; I'd like to acknowledge whose support has made this body of work possible.

I would like to express my deep thanks and gratitude to *Prof. Dr. / Nadia Mohamed Abdallah*, Professor of Biochemistry, Faculty of Science, Ain Shams University for her meticulous supervision and valuable advices throughout this thesis.

I'd like to express my gratitude and sincere thanks to *Prof. Dr. / Nour El-Din Amin*, Professor of Biological Chemistry, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), for his kindness, greatful support and cooperation during this work.

I am deeply grateful to *Prof. Dr. / Mohamed Ragaa Mohamed*, Professor of Biochemistry, Faculty of Science, Ain Shams University, for his keen supervision, valuable guidance and encouragement. He offered deep experience to get this work fulfilled.

I'd like to express my deepest thanks and appreciation to *Prof. Dr. / Ahmed Shafik Nada*, Professor of physiology, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT) for his valuable advice and great support and without his efforts and facilities this work wouldn't be completed.

My great thanks extend to include all members of Biochemistry Department, Drug Radiation Research Department, Central Laboratory for Atomic Absorption and all members of Irradiation Unit, National Center for Radiation Research and Technology (NCRRT) for their support and cooperative spirit.

Finally no thanks can repay my parents, my brother and my friends for their continuous help and encouragement.

I declare that this thesis has been composed by myself and that the work of which it is a record has been done by myself. It has not been submitted for a degree at this or any other university.

Marwa Abd El Hameed Mohamed

Contents	Page
Acknowledgement	i
Abstract	iii
List of abbreviations	V
List of tables	vii
List of figures	ix
Introduction	xi
Aim of the work	xiv
Chapter I	
Review of literature	1
A-Radiation	1
-Radiation types	2
-Interaction of radiation with matter	4
-Units of ionizing radiation	7
-Biological effects of ionizing radiation	8
1-Direct interaction	9
2-Indirect interaction	9
-Effect of ionizing radiation on liver function	12
-Effect of ionizing radiation on renal function	14
-Effect of ionizing radiation on lipid profile	15
-Effect of ionizing radiation on glucose level	17
-Effect of ionizing radiation on complete blood count (CBC)	18
-Effect of ionizing radiation on antioxidant defensive status	19
-Effect of ionizing radiation on trace element metabolism	24
-Zinc	25
-Copper	26
-Iron	28
-Selenium	30

- Manganese	33
- Effect of ionizing radiation on calcium metabolism	35
B-Acrylonitrile (AN)	37
-Exposure to acrylonitrile	37
-Effect of acrylonitrile on health	38
-Metabolism of acrylonitrile	39
C-Flavonoids	42
-Citrus bioflavonoids	42
-Hesperidin	43
-Beneficial effects of hesperidin	44
Chapter II	
Materials and Methods	40
	49
A N/(-4	
A-Materials	49
(I) Animals	49
(II) Irradiation process	49
(III) Treatment	50
(IV) Experimental design	50
P. Mathada	
B- Methods.	51
1-Blood sampling.	51
2-Tissue sampling.	52
3- Biochemical parametersi- Determination of AST and ALT activities	53
	53
ii- Determination of ALP activityiii- Determination of albumin concentration	57
iv- Determination of total protein -Biuret method	59
•	60
v- Determination of glucose concentrationvi- Determination of urea concentration	61
vii- Determination of creatinine concentration	62
viii- Determination of cholesterol concentration	64
	65
ix- Determination of triacylglycerols concentrationx- Determination of HDL-C concentration	66
xi- Determination of LDL-C concentration	68
	70
xii-Assessment of total scavenger capacity	71
4-Tissue homogenate	73

I- Determination of total glutathione content		
II- Determination of lipid peroxidation level		
III- Determination of glutathione peroxidase activity	77	
IV- Determination of catalase activity	79	
V- Estimation of superoxide dismutase activity	82	
5- Preparation of tissue samples for atomic absorption analysis	85	
6-Statistical analysis	86	
Chapter III		
Results	88	
Chapter IV		
Discussion	120	
Summary and conclusion		
Recommendations		
References		
Arabic Summary		
Arabic Abstract		

List of Abbreviations

ACAT	Acetoacetyl CoA transferase
ALP	Alkaline phosphatase
ALT	Alanine transaminase
AN	Acrylonitrile
AST	Aspartate transaminase
BMD	Bone mineral density
Ca	Calcium
CAT	Catalase
CBC	Complete blood count
CCl ₄	Carbon tetrachloride
Cd	Cadmium
CEO	Cyano ethylene oxide
CNS	Centrl nervous system
Co	Cobalt
Cu	Copper
DNA	Deoxyribonucleic acid
EDTA	Ethylene diamine tetra-acetic acid
EH	Epoxide hydrolase
Fe	Iron
GGT (γGT)	Gamma glutamyl transferase.
γ- ray	Gamma irradiation
GSH	Reduced glutathione
GSH-Px (GPx)	Glutathione peroxidase
GSSG	Oxidized glutathione
H_2O_2	Hydrogen peroxide
Hb	Hemoglobin
Hb A1c	Glycated hemoglobin
HCT%	Hematocrit
HDL-C	High density lipoprotein- cholesterol
Hes	Hesperidin
HMG-COA	3- Hydroxy - 3- methyl glutaryl coenzyme A
	reductase
LDH (LDH-X)	Lactate dehydrogenase

LDL-C	Low denisty lipoprotein- cholesterol
LPO	Lipid peroxidation
LPS	Lipopolysaccharide
MDA	Malondialdehyde
Mg	Magensium
Mn	Mangenese
MnSOD	Manganese – superoxide dismutase
mRNA	Messenger ribonucleic acid
MTs	Metallothioneins
NADPH	Nictotinamide adenine dinucleotide phosphate
	reduced
NO	Nitric oxide
RBC's	Red blood cells
RNA	Ribonucleic acid
ROS	Reactive oxygen species
Se	Selenium
SOD	Super oxide dismutase
STZ	Streptozotcin
T2DM	Type 2 diabetes mellitus.
T3	Triiodothyronine
T4	Thyroxine, tetraiodothyronine.
TBA	Thiobarbituric acid
TBARS	Thiobarbituric acid reactive substances
TC	Total cholesterol
TCA	Trichloroacetic acid
TGs	Triacylglycerols
TSC	Total scavenger capacity
UVB	Ultra violet beam
VLDL-C	Very low density lipoprotein- cholesterol
WBC's	White blood cells
Zn	Znic

List of Tables

Table NO.	Title	Page
(1)	Effect of hesperidin on CBC of rats treated with γ-radiation and/or acrylonitrile.	90
(2)	Effect of hesperidin on serum liver enzyme (AST, ALT and ALP) activities of rats treated with γ-radiation and/or acrylonitrile.	92
(3)	Effect of hesperidin on serum albumin, total proteins and glucose of rats treated with γ-radiation and/or acrylonitrile.	95
(4)	Effect of hesperidin on serum urea and creatinine of rats treated with γ -radiation and/or acrylonitrile.	98
(5)	Effect of hesperidin on serum lipid profile of rats treated with γ -radiation and/or acrylonitrile.	101
(6)	Effect of hesperidin on serum TSC and MDA (in liver & kidney) of rats treated with γ-radiation and/or acrylonitrile.	104
(7)	Effect of hesperidin on catalase, GPx, SOD activities and GSH in liver tissue of rats treated with γ-radiation and/or acrylonitrile.	107
(8)	Effect of hesperidin on catalase, GPx, SOD activities and GSH in kidney tissue of rats treated with γ-radiation and/or acrylonitrile.	109
(9)	Effect of hesperidin on Cu, Zn and Se levels in liver tissue of rats treated with	112

	γ-radiation and/or acrylonitrile.	
(10)	Effect of hesperidin on Cu, Zn and Se	114
	levels in kidney tissue of rats treated γ -	
	radiation and/or acrylonitrile.	
(11)	Effect of hesperidin on Fe, Mn and Ca	116
	levels in liver tissue of rats treated with	
	γ-radiation and/or acrylonitrile.	
(12)	Effect of hesperidin on Fe, Mn and Ca	118
	levels in kidney tissue of rats treated	
	with γ-radiation and/or acrylonitrile.	

List of Figures

Fig.	Title	Page
No.		
(1)	Lipid peroxidation of cell membrane by free	12
	radicals.	
(2)	Metabolism of acrylonitrile	41
(3)	Structure of hesperidin	44
(4)	Standard curve of AST.	56
(5)	Standard curve of ALT.	57
(6)	Standard curve of glutathione.	75
(7)	Standard curve of MDA.	77
(8)	Standard curve of hydrogen peroxide.	82
(9)	% change of the mean values of AST, ALT &	93
	ALP in presence of γ-radiation and/or	
	acrylonitrile.	
(10)	% change of the mean values of albumin, total	96
	proteins & glucose in presence of γ-radiation	
	and/or acrylonitrile.	
(11)	% change of the mean values of urea & creatinine	99
	in presence of γ -radiation and/or acrylonitrile.	
(12)	% change of the mean values of lipid profile in	102
	presence of γ-radiation and/or acrylonitrile.	
(13)	% change of the mean values of serum total	105
	scavenger capacity (TSC) and lipid peroxidation	
	marker (MDA) in liver and kidney in presence of	
(4.4)	γ-radiation and/or acrylonitrile.	100
(14)	% change of the mean values of endogenous	108
	antioxidant markers in liver in presence of γ -	
(1.5)	radiation and/or acrylonitrile.	110
(15)	% change of the mean values of endogenous	110
	antioxidant markers in kidney in presence of γ -	
(10)	radiation and/or acrylonitrile.	112
(16)	% change of the mean values of liver Cu, Zn and	113
	Se concentrations in presence of γ-radiation and/or	
	acrylonitrile.	

(17)	% change of the mean values of Kidney Cu, Zn	115
	and Se concentrations in presence of γ -radiation	
	and/or acrylonitrile.	
(18)	% change of the mean values of liver Fe, Mn and	117
	Ca concentrations in presence of γ-radiation and/or	
	acrylonitrile.	
(19)	% change of the mean values of kidney Fe, Mn	119
	and Ca concentrations in presence of γ -radiation	
	and/or acrylonitrile.	
(20)	Mechanism of hesperidin's antioxidant activity.	138