APPLICATION of GENETIC ENGINEERING TECHNOLOGY to DETECT QUANTITATIVE TRAIT LOCI of ASCITES in BROILER CHICKS

HESHAM AHMED HUSSAIN HUSSAIN MADIAN

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2008

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Science (Poultry Breeding)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

APPLICATION of GENETIC ENGINEERING TECHNOLOGY to DETECT QUANTITATIVE TRAIT LOCI of ASCITES in BROILER CHICKS

By
HESHAM AHMED HUSSAIN HUSSAIN MADIAN
B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2008

This thesis for M.Sc. degree has been approved by:

Dr.	. Hassan Hassan Younis	
	Prof. of Poultry Breeding, Faculty of Agriculture, Kafer El Shakh University.	
Dr. Ahmed Galal El-Sayed		
	Prof. of Poultry Breeding, Faculty of Agriculture, Ain Shams University.	
Dr	Prof. Emeritus of Poultry Breeding, Faculty of Agriculture, Ain Shams University.	

Date of Examination: 8 / 5 / 2012

APPLICATION of GENETIC ENGINEERING TECHNOLOGY to DETECT QUANTITATIVE TRAIT LOCI of ASCITES in BROILER CHICKS

Ву

HESHAM AHMED HUSSAIN HUSSAIN MADIAN

B.Sc. Agric. Sc. (Poultry Production), Ain shams University, 2008

Under the supervision of:

Dr. Ali Zein El- Dein Hassan

Prof. Emeritus. of Poultry Breeding, Poultry Production Dept. Faculty of Agriculture, Ain Shams University, (Principal Supervisor).

Dr. Mahmoud Yousif Mahrous

Assistant Prof. of Poultry Breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University.

تطبيق تكنولوجيا الهندسة الوراثية للكشف عن مواقع الصفات الكمية لظبيق تكنولوجيا اللارتشاح البطنى في دجاج اللحم

ر سالة مقدمة من

هشام احمد حسین حسین مدین

بكالوريوس علوم زراعية (قسم إنتاج الدواجن)، جامعة عين شمس، 2008

للحصول على درجة الماجستير في العلوم الزراعية (تربية دواجن)

قسم إنتاج الدواجن كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة

تطبيق تكنولوجيا الهندسة الوراثية للكشف عن مواقع الصفات الكمية لظبيق تكنولوجيا الهندسة الارتشاح البطنى في دجاج اللحم

رسالة مقدمة من

هشام احمد حسین حسین مدین

بكالوريوس علوم زراعية (إنتاج دواجن)، جامعة عين شمس، 2008

للحصول على درجة الماجستير فى العلوم الزراعية (تربية دواجن)

وقد تمت مناقشة الرسالة والموافقة عليها

اللجنـــة:	
. حسن حسن يونس	د.
أستاذ تربية الدواجن، كلية الزارعة، جامعة كفر الشيخ	
. أحمد جلال السيد جاد	د.
أستاذ تربية الدواجن، كلية الزراعة، جامعة عين شمس	
على زين الدين حسن فراج	د.
أستاذ تربية الدواجن المتفرغ، كلية الزارعة، جامعة عين شمس	

تاريخ المناقشة: 8/ 5 / 2012

جامعة عين شمس كلية الزراعة

رسالة ماجستير

اسم الطالب : هشام احمد حسين حسين مدين

عنوان الرسالة : تطبيق تكنولوجيا الهندسة الوراثية للكشف عن

مواقع الصفات الكمية لظاهرة الارتشاح البطنى

في دجاج اللحم

اسم الدرجـــة : ماجستير في العلوم الزراعية (تربية دواجن)

لجنة الإشراف:

د. على زين الدين حسن فراج

أستاذ تربية الدواجن المتفرغ ، قسم انتاج الدواجن، كلية الزارعة، جامعة عين شمس (المشرف الرئيسي)

د. محمود يوسف محروس

مدرس تربية الدواجن، قسم انتاج الدواجن، كلية الزارعة، جامعة عين شمس

تاريخ التسجيل: 14 / 9 / 2009

الدراسات العليا

أجيزت الرسالة بتاريخ 8 / 5 /2012

ختم الإجازة

موافقة مجلس الجامعة

موافقة مجلس الكلية

2012/ /

2012/ /

CONTENTS

	Page
LIST OF TABLES	
LIST OF FIGURES	
LIST OF PHOTOS	
LIST OF ABBEVRATIONS	
ACKNOWLEDGMENT	
ABSTRACT	1
INTRODUCTION	2
	4
REVIEW OF LETERATURES	
1. Phenotypic Characteristics	4
1.1. Body weight	4
1.2. Feed consumptions and feed conversion ratio	5
1.3. Carcass characteristics	6
1.4. Abdominal fat	7
1.5. Mortality ratio	10
1.6.Blood constituents	13
2. Ascites trait	13
2.1. Overview on ascites	13
2.2. Environment factor (stresses)	14
2.3. Ascites and genetic makeup	15
3. Molecular genetics analysis	17
3.1. Overview of molecular genetics in chicken	17
3.2. Molecular markers and genetic diversity	19
3.3. Utilize of molecular genetics in chicken	20
3.4. Microsatellite PCR of DNA.	20
3.5. RAPD	22
	23
MATERIALS AND METHODS	
1. Data Collection.	23
2. Measurements and observations	25
2.1. Phenotypic parameters	25
2.1.1. Body weight	25

2.1.2. Feed consumption and feed conversion	25
2.1.3. Carcass triats	25
2.1.4 Blood constituents	26
3. Mortality rate	26
4. Ascites experiment	26
4.1. Lipopolysaccharide injection	26
5. Genetic Analysis	27
5.1. the utilized genetic Markers	27
5.2.Molecular Genetic studies	27
5.2.1.DNA Extraction and purification	27
5.2.2.Molecular genetic reagents	27
5.2.2.1.Materials	27
5.2.2.Methods	27
5.2.3.PCR	28
5.2.4. Selection of markers	29
5.2.5. DNA extraction and Microsatellite Analysis	29
6.Statistical analysis	30
	31
RESULTS AND DISCUSSION	
1.Phenotypic parameters	31
1.1.Body weight	31
1.2. Body weight ,Feed consumption and feed conversion ratio	33
1.3.Carcass characteristics	35
1.4.Abdominal fat	39
2.Blood Parameters	40
3.Mortality rate	42
4.Ascites Parameters	42
4.1.Blood Constituents	42
4.2.Left and right ventricular	46
4.3.Relative liver and lungs weight	50
4.4.Ascites Mortality	52
5.Genetic studies	53

6. Genetic diversity	55
-	
SUMMARY AND CONCLUSION	64
REFERENCES	67
ARABIC SUMMARY	

LIST OF ABBREVIATION

ABBREVIATION Mean

A Adenine

A/G Albumin to Globulin

AA Arbor Acres

AFLP Amplified Fragment Length

Polymorphism

AIC Ascites-Inducing Conditions

AS Ascites Syndrome

AV Avian

BW Body Weight

C Cytosine

COB Cobb

DFP DNA Fingerprinting

DNA Deoxyribonucleic acid

FC Feed consumption

FC /\Delta wt Feed conversion ratio(Index of feed

consumption)

FCR Feed consumption rate

G Guanine

GLM General Linear Model

GR Growth Rate

HB Hubbard

HCT Hematocrit

ISSR Inter-Simple Sequence Repeats

LPS Lipopolysaccharide

LV Left Ventricular

LV/TV Left Ventricular/ Total Ventricular

MAS Marker- Assisted Selection

MW Molecular Weight

NCBI National Centre of Biotechnology

Information

QTL Quantitative Trait Loci

PAP Pulmonary Arterial Pressure

PHS Pulmonary Hypertension Syndrome

PCR Polymerase Chine Reaction

Bp base pairs

RAPD Random Amplified Polymorphic DNA

RFLP Restriction Fragment Length

Polymorphisms

RV Right Ventricular

RV% Right ventricular as a percentage of

body weight

RV/TV Right Ventricle to the total ventricular

weight

RVF Right Ventricular Failure

RVH Right Ventricular Hypertrophy

SA Survival Analysis

SAS Statistical analyses

SBS Sodium bisulfate

SDS Sudden Death Syndrome

SNP single nucleotide polymorphism

SSR Simple Sequence Repeats

T Thiamine

TV Total Ventricular

∆WT Weight gain

ACKNOWLEDGMENT

Firstly, I wish to express my prayerful thanks to **ALLAH** for everything.

My deepest gratitude and sincere thanks are extended to **Prof. Dr. A. Zein El-Dein** (Principle Supervisor), Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his supervision, valuable advice, reviewing the manuscript and continues supporting during study.

Many thanks also due to **Dr. M. M. Fathi** Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University on his supports, advice and interest.

I wish to express my sincere gratitude to **Dr. M. Y. Mahrous** lecture of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his supervision, encouragement, valuable advice, interest and remote revising the manuscript.

I deeply grateful and greatly indebted to **Prof. Dr. A. Galal** Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his, interest, encouragement and valuable advice.

I would like to initiate display profuse thank to the members of my supervising committee **Prof. Dr. M. Dynary** Professor of Genetics, Genetics Department, Faculty of Agriculture, Tanta University.

I would also like to express thanks to **Dr. L. Radwan, MS. H. Assi, MS. M.Sh, Mr.G.N.Rayan, Mr.A.M.Sawy, Mr.A.M.Abdelmoniem** and all staff members of Poultry Production Department, Faculty of Agriculture, Ain Shams University.

Special thanks to my Parents for all things and all my Family for continuous support, encouragement and love.

Special thanks and deep gratefulness are due to **Miser Arabia** hatchery Company for supporting this and providing the chicks from four strains for free.

I would like to thank **Scientific Research Academy, Cairo Egypt,** on providing me a scholarship and financing me through Three years sharing with **Faculty of Agriculture, Ain Shams University.**

LIST OF TABLES

Table 1	Composition of the rations	page 24
2	Body weight (Means ± SE) of Arbor Acres, Avian, Cobb and Hubbard broiler strains at different ages	32
3	Body weight gain, feed consumption and feed conversion ratio (Means \pm SE) of Arbor Acres, Avian, Cobb and Hubbard broiler strains	34
4	Body weight and edible meat parts weight (Means \pm SE) of Arbor Acres, Avian, Cobb and Hubbard broiler chick strains at marketing age (42 days)	36
5	Breast, thigh and drumstick muscles weight (Means \pm SE) of Arbor Acres, Avian, Cobb and Hubbard broiler chick strains at marketing age (42 days)	38
6	Blood constituent (Means \pm SE) of Arbor Acers, Avian, Cobb and Hubbard broiler chicks	41
7	Hematological parameters of broiler chicks (Means± SE) as affected by strain, LPS injection and their interaction	45
9	Total, left and right ventricular (as a percentage of live body weight) of broiler chicks (Means±SE) as affected by strain, LPS injection and their interaction	48
10	Left and right ventricular (as a percentage of total ventricular) of broiler chicks (Means±SE) as affected by strain, LPS injection and their interaction	49
11	Liver and lung sizes (as a percentage of live body weight) of broiler chicks as affected by strain, LPS injection and their interaction	51
12	Simple sequence repeats for the marker	61
13	Gel Polymorphism data (Monomorphic and Polymorphic)	61
14	One/Zero Data for the number bands Frequency	62

List of Figures

Figure		page
1	Flow chart showing the development of the ascites syndrome broilers	9
2	Diagrammatic summary of possible ascites syndrome in broilers	12
3	Ambient temperature recorded during the experimental period	23
5	Absolute and relative abdominal fat percentage of Arbor Acers, Avian, Cobb and Hubbard broiler chicks	39
6	Mortality rate (0-6 wk) of Arbor Acres (AA), Avian (AV), Cobb (CO) and Hubbard (HB) broiler strains	42
7	Mortality ratio after LPS-injection for Arbor Acers (AA), Avian (AV), Cobb (COB) and Hubbard (HB) strains	52
8	The produced banding of the individual microsatellite profile showing marker polymorphism at broilers strains.	58
9	The produced banding of the individual RAPD profile showing marker polymorphism at broilers strains.	60

List of photos

photo		page
	A cross sectional slices through the ventricle of two hearts.	
1	The right of the heart for broiler with ascites syndrome. The	50
	section on the lift is the heart of healthy broiler (42 days)	