PREVALENCE OF AUTO IMMUNE THYROIDITIS AND CELIAC DISEASE IN TURNER SYNDROME

Thesis Submitted for partial fulfillment of Master Degree in Pediatrics

By
Nader Abd El-Raouf Mohammed
M.B.B.Ch, Zagazig University
May 2003

Under Supervision of

Prof. Dr. Rasha Tarif Hamza

Assistant Professor of Pediatrics Faculty of Medicine, Ain Shams University

Prof. Dr. Khaled Omar Abdallah

Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University **2011**

إنتشار مرض التهاب الغدة الدرقية المناعى وحساسية المعى القمحى في متلازمة تيرنر

رسالة توطئة للحصول على درجة الماجستير في طب الأطفال

مقدمة من الطبيب/ نادر عبدالرؤوف محمد الخولي بكالوريوس الطب والجراحة جامعة الزقازيق مابو ٢٠٠٣

تحت إشراف الأستاذ الدكتور/رشا طريف حمزة استاذ مساعد طب الأطفال كلية الطب - جامعة عين شمس الأستاذ الدكتور/خالد عمر عبد الله أستاذ مساعد الباثولوجيا الاكلينيكية كلية الطب - جامعة عين شمس كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس2011

SUMMARY

The present cross-sectional study was conducted on 30 patients with TS whose ages ranged from 0.43 to 25.49yrs, with a mean age of 15.728±5.48 years, attending the specialized Pediatric Endocrinology clinic, Children's hospital, Ain Shams University during the period from October 2009 to October 2010.

The aim of this study was to determine the prevalence of autoimmune thyroiditis and cleliac disease among patients with TS and its relation to karyotype and clinical manifestations.

All Patients were subjected to full medical history, full clinical examination, anthropometric measurements, Tanner pubertal staging, and measurement of Anti-TPO and anti-TG antibodies for autoimmune thyroiditis and anti-T.T.IgA antibodies for celiac disease.

The study showed that:

A. Out of 30 studied patients, 9 patients had positive anti-TPO (30%) and 3 had positive anti-TG (10%) and none of the cases had positive Anti-T.T.IgA antibodies. Out of the 9 cases with positive Anti-

Acknowledgement

First of all, thanks to **ALLAH** whose magnificent help was the main factor in completing this work.

I wish to express my unlimited gratitude to **Prof. Dr. Rasha Tareef Hamza**; Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her brotherhood guidance, patience, her supervision, helpful discussions and suggestions. In fact, a few words never suffice to do justice in thanking her for her extraordinary contribution of time, effort and valuable experience.

I can't fully express my deepest thanks to **Prof. Dr. Khaled Omar Abdallah;** Assistant Professor of Clinical pathology, Faculty of Medicine, Ain Shams University, for his patience, assistance and very helpful advice and guidance during the progress of this work.

My special thanks to all my patients and their parents who agreed to share in this study. I'm thankful to them for their effort, time and cooperation.

Contents

	Page
Introduction	1
Aim of the Work	4
Review of Literature	5
Patients and Methods	118
Results	126
Discussion	153
Summary	171
Conclusion	175
Recommendations	176
References	177
Appendices	244
Arabic Summary	

List Of Tables

Table No.	Title	Page
1	Karyotypes commonly associated with Turner syndrome	10
2	Phenotypic characteristics of Turner syndrome and their frequency range	15
3	Renal abnormalities in TS	35
4	The natural history of Turner syndrome and its associated problems	40
5	Guidelines for the Management of Turner Syndrome	50
6	Turner syndrome girls and women with positive serology for organ-specific antibodies	75
7	Recommended levothyroxine doses for children and adolescents	86
8	Risk factors for celiac disease in specific populations	91
9	Definition of different states of celiac disease	106

Table No.	Title	Page
10	New recommendations for initial serology tests for celiac disease	111
11	The modified Marsh classification for Celiac disease	113
12	Age and anthropometric measurements among studied cases	126
13	Frequency of various karyotypes among studied cases	127
14	Frequency of Tanner breast stages among studied cases	128
15	Frequency of phenotypic and congenital anomalies among studied cases	130
16	Relation between Genotype and phenotype of studied cases	132
17	Frequency of thyroid autoantibodies among studied cases	133
18	Detailed descriptive data of cases with positive Anti-TPO antibodies	134

Table No.	Title	Page
19	Detailed descriptive data of cases with positive Anti-TG antibodies	136
20	Relation between thyroid autoantibodies and age of studied cases	138
21	Relation between thyroid autoanti- bodies and Tanner breast stage	139
22	Relation between Anti-thyroid peroxidase antibodies and karyotype of studied cases	140
23	Relation between Anti-thyroglobulin antibodies and karyotype of studied cases	141
24	Relation between Anti-thyroid peroxidase positivity and phenotype of studied cases	142
25	Relation between Anti-thyroid peroxidase positivity and each of congenital anomalies and goiter	143

Table No.	Title	Page
26	Relation between Anti-thyroglobulin antibodies positivity and phenotype of studied cases	144
27	Relation between Anti-thyroglobulin anti-bodies positivity and each of congenital anomalies and goiter of studied cases	145
28	Comparison of anthropometric measurements among cases with positive and negative Anti-TPO antibodies	146
29	Comparison of anthropometric measurements among studied cases with positive and negative Anti- TG antibodies	147
30	Free T4 and TSH of studied cases	148
31	Relation between Anti-TPO antibodies and each of Free T4 and TSH of studied cases	149
32	Relation between Anti-TG antibodies and each of Free T4 and TSH of studied cases	150

Table No.	Title	Page
33	Frequency of patients with positive Anti- TPO and/or Anti-TG antibodies having abnormal thyroid functions (Graves disease or hypothyroidism)	151
34	Frequency of Anti-TTIgA autoantibodies among studied cases	152

List Of Figures

Figure No.	Title	Page
1	The Banding Pattern on the X chromosome	11
2	A 12-year-old girl with Turner syndrome	24
3	Redundant Nuchal Skin (Panel A) and Puffiness of the Hands (Panel B) and Feet (Panel C) in Turner's Syndrome	27
4	Nail dysplasia in TS	27
5	MRI of the aorta in a woman with TS	31
6	Cystic hygroma in 12 weeks gestational age, sagital and transverse planes	44
7	Genetic and immunogenetic interplay in the development of autoimmune diseases and other disorders in Turner syndrome	70
8	Mucosal injury and antibody production in celiac disease	102
9	Villi Atrophy in Celiac Disease	114
10	Frequency of Tanner breast stages among studied cases	129

List of Abbreviations

AGA Antigiiadin antibodies

IgG Immunoglobulin G

ALS Acid-labile subunit

Anti-GAD Anti-glutamic acid decarboxylase

ATTDs Autoimmune thyroid diseases

BMD Bone mineral density

CD Celiac diases

CNS Central nervous system

CSF Cerebrospinal fluids

CTLA-4 Cytotoxic T lymphocyte-associated protein-4

CV Cardiovascular

DIAPH2 The diaphanous gene

ECG Electrocardiography

ELISA Enzyme linked immunosorbant assay

EMA Endomysial antibody

ERT Estrogen repalcement therapy

ESPGAN European society of pediatric gastro-

enterology and nutrition

FHA Final adult heights

FISH Fluorescence in situ hybridization

FoXP3 Forkhead/winged helix transcription factor

FSH Follicular stimulating hormone

FSS Familial short stature

FT4 Free thyroxine

GFD Gluten free diet

GH Growth hormone

GHD Growth hormone deficiency

GHR Growth hormone receptor

Hb Hemoglobin

hGH Human growth hormoneHLA Human leucocytic antigen

HPF High power field

HRQol Health related quality of life

HRT Hormonal replacement therapy

HT Hashimoto's thyroiditis

IBD Inflammatory bowel disease

IDDM Insulin dependent diabetes mellitus

IEL Intraepithelial lymphocyte

Ig Immunoglobulin

IgA Immunoglobulin A

IGF Isulin like growth factor

IGFBP IGF biodning protein

IGT Impaired glucose itolecrance

IQ Intelligence qaution

ISS Idiopathic short stature

LH luteinizing hormone

L-T4 L-thyroixine

MAS Malabsorption syndrome

Mb Megabases

MHC Major histocompatibility complex

MRI Magnetic resonance imaging
NIH National institute of health

OGTT Oral glucose tolerance test

PAH Projected adult height

PAR1 Pseudoautosomal region 1PAR2 Pseudoautosomal region 2PAS Para-aminosalicylic acid

POF Premature ovarian failure gene

PTC Papillary thyroid carcinoma

RR Relative risk

SCH Subclinical hypothyroidism

SD Standard deviation

SDS Standard deviation score

SGPT Serum Glutamate pyruvate transminase

SHOX Short stature homeobox gene

T2DM Type 2 diabetes mellitus

Tc T-celss

TG Thyroglobulin antibody

TH Thyroid hormone

TNF- α Tumor necrosis factor α

TPO Ab Thyroperoxidase antibody

T-regs Regulatory T-cells

TS Turner syndrome

TSH Thyroid stimulating hormone

tTG Tissue transglutaminase

VNTR Variable number of tandem repeat