Resolution of Reciprocal ST-segment Depression After STEMI in Patients Treated With Intravenous Thrombolytic Therapy: Prognostic Significance And its Correlates

Thesis

Submitted in partial fulfillment of master degree in **Cardiology**

By

Thabet Samir El Sayed Mohammed

M.B.B.CH
AIN SHAMS UNIVERSITY

Under Supervision of

Prof. Dr. Osama Abd El Aziz Rifaie

Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr. Diaa El Din Ahmed Kamal

Lecturer of Cardiology Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University **2017**

سورة البقرة الأية: ٣٢

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful. I can do nothing without Him.

Great thanks to **Prof. Dr. Osama Abd El Aziz Rifaie,**Professor of Cardiology, Faculty of Medicine – Ain Shams
University, for his generous supervision, meticulous
observation and sincere guidance. I really have the honor to
complete this work under his supervision.

Special thanks to **Dr. Diaa El Din Ahmed Kamal,** Lecturer of Cardiology, Faculty of Medicine – Ain Shams University, for the efforts and time he has devoted to accomplish this work.

Last but not least, I can't forget to thank all members of my family, especially my parents and my Wife, for their support and help in every step of my life.

Thabet Samir El Sayed Mohammed

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vi
Introduction	1
Aim of the Work	3
Review of Literature	
Acute Myocardial Infarction	4
The Electrocardiogram in ST Elevation Acute Myocardial Infarction	
Patients and Methods	74
Results	91
Discussion	108
Summary	114
Conclusion	117
Study Limitations and Recommendations	118
References	119
Appendix	162
Arabic Summary	

IRA

List of Abbreviations

Abbr. Full-term **ACEI** : Angiotensin-converting enzyme inhibitor ACS : Acute coronary syndrome **ADA** : American Diabetes Association **ADP** : Adenosine diphosphate **AMI** : Acute Myocardial Infarction **BMS** : Bare-metal stents BUN : Blood urea nitrogen : Coronary artery bypass grafting **CABG CAD** : Coronary artery disease **CHF** : Congestive heart failure CK : Creatine kinase **CRISP** : Counterpulsation to Reduce Infarct Size Pre-PCI cTn : Cardiac troponin : Clopidogrel in Unstable angina to prevent Recurrent Events **CURE CVA** : Cerebrovascular accident CX : circumflex **DAPT** : Dual antiplatelet therapy **DBP** : Diastolic blood pressure : Diabetes Control and Complications Trial **DCCT DES** : Drug-eluting stents **ECG** : Electrocardiography : Ejection fraction EF : Fasting blood glucose **FBG** : F-2-fluorodeoxyglucose **FDG IABP** : Intra-aortic balloon pump

: Identification of infarct related artery

List of Abbreviations

ISIS : International Study of Infarct Survival

KSA : Kingdom of Saudi ArabiaLAD : Left anterior descendingLBBB : Left bundle branch block

LV : Left Ventricle

LVEDD : Left ventricular end diastolic dimension

LVEF : Left ventricular ejection fraction

LVESD : Left ventricular end systolic dimension

MACE : Major adverse cardiac event

MI : Myocardial infarction

mIBG : Meta-iodo-benzylguanidineMLD : Minimal luminal diameter

NGSP : National Glycohemoglobin Standardization Program

NSTE : Non-ST-segment elevation

OASIS : Optimal Antiplatelet Strategy for Interventions

OGTT : Oral glucose tolerance test

OM : Obtuse marginal

PCI : Percutaneous coronary intervention
PCI : Percutaneous coronary intervention

PLATO: PLATelet inhibition and patient Outcomes

RAD : Reference artery diameter

RCA : Right coronary artery

RV : Right ventricle

SBP : Systolic blood pressure

STD : ST depression

STD-R : Segment depression resolution

STEMI : ST-segment elevation myocardial infarction

STE-R : ST segment elevation resolution

T : Troponin

List of Abbreviations

TAPAS: Thrombus Aspiration during Percutaneous coronary

intervention in Acute myocardial infarction

TIA : Transient ischaemic attack

TIMI : Thrombolysis In Myocardial Infarction

TnC : Troponin C TnI : Troponin I

TTE : Transthoracic echocardiogram

UFH : Unfractionated heparinURL : Upper reference limitWMSI : Wall motion score index

List of Tables

Cable N	o. Title Page T	No.
Table (1):	Contraindications to fibrinolytic therapy	33
Table (2):	Fibrinolytic therapy	34
Table (3):	Doses of fibrinolytic agents	35
Table (4):	Doses of antiplatelet and antithrombin co- therapies	38
Table (5):	Routine therapies in the acute, subacute and long term phase of ST-segment elevation myocardial infarction	43
Table (6):	Killip classification.	78
Table (7):	Assessment of wall motion abnormality	83
Table (8):	TIMI Flow	87
Table (9):	Clinical and demographic data distribution of the study group.	92
Table (10):	Laboratory and imaging variables of the study group.	93
Table (11):	ECG variables of the study group.	95
Table (12):	Coronary angiography variables of study population	97
Table (13):	MACE distribution of the study group	98
Table (14):	Comparison between 90 minutes STD resolution ≥50% [yes and no] with clinical and demographic data.	100
Table (15):	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102

List of Tables

Table (16):	Comparison resolution ≥50°					104
Table (17):	Comparison resolution ≥50 one month foll	% with M	ACE	in hospita	l and	105
Table (18):	Comparison resolution ≥50 follow up	0% with M	IACE	in one r	nonth	106

List of Figures

Figure No	v. Citle Page C	No.
Figure (1):	Normal ECG	80
Figure (2):	STEMI with reciprocal changes as inclusion criteria.	80
Figure (3):	J point	81
Figure (4):	How to measure ST segment deviation	81
Figure (5):	Short axis view showing LV diameters	83
Figure (6):	EF by Simpson method	84
Figure (7):	EF by Simpson method	85
Figure (8):	The contractile segments of left ventricle	86
Figure (9):	Coronary angiography showing RCA	88
Figure (10):	Coronary angiography showing RCA	88
Figure (11):	Coronary angiography left system	89
Figure (12):	Coronary angiography showing left system Clinical assessment: including MACE during hospital stay and at 1 month	89
Figure (13):	90 minutes STD resolution ≥50% in relation to Killip class	. 101
Figure (14):	Relation between 90 minutes STD resolution ≥50% and hospital stay (days). 106	
Figure (15):	Relation between 90 minutes STD resolution ≥50% and hospital heart failure.	107

Introduction

The ECG remains a simple yet powerful tool in the assessment of reperfusion efficacy and prognosis following ST-segment elevation myocardial infarction (STEMI). The current ESC and ACC/AHA guidelines advocate greater than 50% resolution of ST-segment elevation at 60–90 min following fibrinolysis as a marker of successful reperfusion. This metric is also associated with enhanced myocardial perfusion, recovery of left ventricular function, reduced infarct size, and improved outcomes. Contemporary studies have also affirmed the prognostic utility of ST-segment elevation. (170)

Less attention has been given towards the evolution of concomitant ST-segment depression in patients with STEMI. The mechanism of concomitant ST-segment depression in patients presenting with STEMI continues to be the subject of debate. ST segment depression may represent: (191,192)

- (i) The reciprocal image of ST elevation.
- (ii)Larger, more extensive infarction.
- (iii) Ischaemia beyond the infracted territory i.e. at a distance.
- (iv) Posterior wall injury in patients presenting with inferior infarction.

Despite uncertainty as to its mechanism, concomitant ST-segment depression has been associated with poorer clinical outcomes. It is recognized from the work of Schroder et al. and others that the extent of ST-segment deviation (elevation plus depression) defines the territory at risk and its overall resolution is prognostically relevant. However, it remains unclear whether resolution of ST-segment depression alone is associated with improved prognosis, independent of ST-segment elevation resolution. (170)

Accordingly, we examined this issue working on the ECGs among 100 STEMI patients treated with IV thrombolytic therapy.

Aim of the Work

To evaluate the impact of resolution of reciprocal ST segment depression between patients with ST-segment elevation myocardial infarction (STEMI) treated with intravenous thrombolytic therapy.

Acute Myocardial Infarction

Definition of acute myocardial infarction (1)

The term acute myocardial infarction (MI) should be used when there is evidence of myocardial necrosis in a clinical setting consistent with acute myocardial ischaemia. Under these conditions any one of the following criteria meets the diagnosis for MI:

Detection of a rise and/or fall of cardiac biomarker values [preferably cardiac troponin (cTn)] with at least one value above the 99th percentile upper reference limit (URL) and with at least one of the following:

- 1. Symptoms of ischaemia.
- 2. New or presumed new significant ST-segment–T wave (ST–T) changes or new left bundle branch block (LBBB).
- 3. Development of pathological Q waves in the ECG.
- 4. Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality.
- 5. Identification of an intracoronary thrombus by angiography or autopsy.
- Cardiac death with symptoms suggestive of myocardial ischaemia and presumed new ischaemic ECG changes or new LBBB, but death occurred before cardiac biomarkers