BIOCHEMICAL STUDIES ON DEXTRANASE ENZYME PRODUCED BY MICROBIAL ISOLATES FROM HONEY BEES

By

SARAH HELAL ALI MANSOUR

(B. Sc. In Microbiology Chemistry, 2007)

In Partial fulfillment for the Degree of

Master of Philosophy in Science (Microbiology)

Supervised by

Dr. Naziha Mohamed Hassanein

Assistant Prof. of Microbiology

Faculty of Science

Ain Shams University

Dr. Mona Abd El Tawab Esawy

Assistant Prof. of Chemistry of Natural & Microbial Products

National Research Centre

Dr. Eman Fadl Ahmed

Researcher of Chemistry of Natural & Microbial Products

National Research Centre

دراسات بيوكيميائية على إنزيم الديكسترانيز المنتج بواسطة عزلات ميكروبية من عسل النحل

ر سالة مقدمة من

الطالبة/ سارة هلال على منصور بكالوريوس العلوم (ميكروبيولوجي – كيمياء ٢٠٠٧)

للحصول على درجة الماجستيرفي فلسفة العلوم (ميكروبيولوجي)

قسم الميكروبيولوجي كلية العلوم جامعة عين شمس

دراسات بيوكيميائية على إنزيم الديكسترانيز المنتج بواسطة عزلات ميكروبية من عسل النحل

رسالة مقدمة من

الطالبة/ سارة هلال على منصور بكالوريوس العلوم (ميكروبيولوجي – كيمياء ٢٠٠٧)

للحصول على درجة الماجستير في فلسفة العلوم

تحت إشراف

د. نزيهة محمد حسنين أستاذ مساعد الميكروبيولوجي – كلية العلوم – جامعة عين شمس

د. منى عبد التواب عيسوى أستاذ مساعد كيمياء المنتجات الطبيعية والميكروبية المركز القومي للبحوث

د. إيمان فضل أحمد باحث كيمياء المنتجات الطبيعية و الميكروبية المركز القومي للبحوث

قسم الميكروبيولوجي كلية العلوم جامعة عين شمس إسم الطالبة: سارة هلال على منصور

الدرجة العلمية: **الماجستير**

القسم التابع له: الميكروبيولوجي

الكلية : **العلوم**

الجامعة : عين شمس

سنة التخرج: ۲۰۰۷

رسالة ماجستير

إسم الطالبة : سارة هلال على منصور

عنوان الرسالة: در اسات بيوكيميائية على إنزيم الديكستر انيز المنتج بواسطة عز لات ميكروبية من عسل النحل.

الدرجة العلمية: ماجستير في فلسفة العلوم (ميكروبيولوجي)

لجنة الإشراف

الإس_م الوظيفة

د. نزيهة محمد حسنين أستاذ مساعد الميكروبيولوجي – كلية العلوم – جامعة عين شمس

لا د. منى عبد التواب عيسوى أســـتاذ مساعد كيمياء النتجات الطبيعية والميكروبية ــ المركز القومى للبحوث

٣. د. إيمان فضل أحمد دكتور كيمياء المنتجات الطبيعية والميكروبية — المركز القومي للبحوث

لجنة التحكيم

7

7

٣

 تاریخ البحث:
 الدراسات العلیا

 ختم الاجادة
 اجیزت الرسالة بتاریخ:
 / ۲۰۱۱

 موافقة مجلس الكلیة
 موافقة مجلس الجامعة

 / ۲۰۱۱
 / ۲۰۱۱

شــــکر

أشكر السادة الاساتذة الذين قاموا بالاشراف وهم:

د د. نزیههٔ محمد حسنین

أستاذ مساعد الميكر وبيولوجي - كلية العلوم - جامعة عين شمس

لا د. منی عبد التواب عیسوی

أستاذ مساعد كيمياء المنتجات الطبيعية والميكروبية - المركز القومي للبحوث

٣ د. إيمان فضل أحمد

باحث كيمياء المنتجات الطبيعية والميكروبية - المركز القومي للبحوث

وكذلك الهيئات الآتية:

- ل قسم الميكر وبيولوجي كلية العلوم جامعة عين شمس
- لا المركز القومي للبحوث قسم المنتجات الطبيعية والميكروبية

ABSTRACT

Screening of five different isolates from different sources of honey was carried out for the production of extracellular dextranase enzyme. Among these tested isolates, a gram- positive, sporulating halophilic bacteria found be the was to potent microorganism for dextranase production. Primary identification of this isolate was carried out using 16S rRNA analysis and identified by 16-23S intergenic region as *Bacillus subtilis* NRC-B233. This strain was able to produce dextranase in high concentration (258 U/ml). Screening of different types of wastes and other cheap materials for their suitability for dextranase production under the two conditions, shaking and static fermentation techniques showed that corn flour gave the best yield when used in production medium under both conditions shaking and solid state fermentation (SSF) (75.276 U/ml, & 61.323 U/g , respectively). Because the difference between shaking and SSF was not high, SSF was choosen as a good condition for dextranase production to save energy. Corn flour is considered as a new dextranase production medium. The optimized culture conditions for dextranase production using solid state fermentation were obtained at 37 °C; after 32 hrs.; at pH (10) and 20 (v/w) moisture content. of Bacillus subtilis NRC-B233 unique character its

ability to produce steady dextranase irrespective to the presence of NaCl in medium. The addition of 0.175M CrCl₃ increased the enzyme production about 4.5 fold. Among different nitrogen sources studied, peptone at a concentration of 2g/l yielded the highest dextranase production (1225.031 U/g). The optimum carbon source was obtained at concentration of 10g/l starch (1553.364 U/g). Further improvement enzyme production was achieved by simple UV mutation which increased the enzyme production up to 2842.3 U/g. This mutant was developed after 15 minutes of exposure of the wild type strain to UV lamp. The crude enzyme was highly tolerant to repeated freezing and thawing, the remaining activity was 100% after three months.

The crude *Bacillus subtilis* NRC-B233 dextranase was partially purified by ultrafiltration then fractional precipitation with ethanol and acetone. The use of ultrafiltration for downstream processing would result in one-step, cost-effective method of recovery for dextranase. The molecular weight of the partially purified enzyme was less than 10 KDa. Acetone at fraction 70% was proved to be the best method for partial purification of dextranase and the purification fold reached to 112.2.

The partially purified dextranase showed its maximum activity at pH 9.2 and 70 °C. It retained full activity (100%) at 75 °C for one hour. Dextranase activity increased about 4 fold in the presence of 10% NaCl.

On the other hand, $CaCl_2$ (0.050M), EDTA (0.100M) and KCl (0.100M) showed high influence on enzyme activity. The calculated values of K_m and V_{max} using different concentrations of dextran (150,000 M.wt) as a substrate were found to be 4.46 mg/ml and 41.66 V_{max} , respectively. The enzyme showed variable degradation effect on different types of dextran and various carbohydrates.

These results suggest that the dextranase secreted by *Bacillus subtilis* NRC-B233 is industrially important from the perspectives of its activity at broad pH ranged from 5.2-10.2. In addition, thermostability, halophilic characteristics and ability to degrade different types of α -1,4 and α -1,6 glycosidic linkages, are more attractive characteristics for application of this enzyme at industrial scale.

In this study we focused on isolation of halophilic bacteria from honey as new source for dextranase production. The mutagenic honey isolate produced a novel halophilic low molecular weight constitutive dextranase characterized by unique features, like thermostability and pH stability. Further, cheap medium like corn flour would be a superior alternative to the already available expensive dextran, since 30-40% of the production cost of industrial enzymes is accounted by the cost of the growth medium.

LIST OF CONTENTS

List of Tables
List of Figures
List of abbreviations
Abstract

			p
1. l	INTRO	DUCTION	
2. 1	REVIE	W OF LITERATURE	
	2.1.	Honey	
	2.1.1.	Microbes in honey	
	2.2.	Definition, structures and properties of dextran	
	2.2.1.	Structures of dextran	
	2.3.	Classification of Dextran-hydrolyzing enzymes	
	2.4.	General sources of enzymes	
	2.5.	Biological function of dextranases	
	2.5.1.	Role of dextranases in dextran-producing micro-	
		organisms	
	2.5.2.	Role of dextranases in non-dextran-producing micro	
		organisms	
	2.6.	Isolation and identification of dextranase producing	
		microorganisms	
	2.7.	Dextranase properties.	
	2.8.	Mutagenesis	
	2.9.	Application of dextranases	
	2.9.1.	Clinical applications of dextran & dextranases	
	2.9.2.	Applications of dextranases in treatment of dental	
		plaque	
	2.9.3.	Use of dextranase in the sugar industry	
3. I	MATE	RIALS AND METHODS	
	3.1.	Materials	
	3.1.1.	Microorganisms	
	3.1.2.	Chemicals	
	3.1.3.	Equipments	
	3.2.	Experimental methods	
	3.2.1.	Isolation of bacterial strains from honey	
	3.2.2.	Isolates identification	
	3.2.3.	Identification of the isolate K	
	3.2.4.	DNA sequencing	
	3.2.5.		
	3.2.6.	PCR amplification for molecular identification	
	3.2.7.	Maintenance of the selected bacteria	

1	
	34
3.2.10. Dextranase production media	35
	36
•	36
3.2.13. Study of different environmental and nutritional conditions	S
	37
3.2.13.1.Effect of different incubation temperatures	37
-	37
	37
3.2.13.4.Effect of initial pH.	38
	38
3.2.13.6.Effect of different concentrations of CrCl ₃	38
	39
	39
	39
3.2.13.10.Effect of different concentrations of starch	39
	39
	41
	41
	41
	42
3.2.18. Partial purification of <i>Bacillus subtilis</i> NRC-B233	
-	42
3.2.18.1. Partial purification of <i>Bacillus subtilis</i> NRC-B233	
*	12
3.2.18.2. Fractional precipitation of <i>Bacillus subtilis</i> NRC-B233	
	42
	42
	43
3.2.19. Properties of the partially purified <i>Bacillus subtilis</i>	
	44
· · · · · · · · · · · · · · · · · · ·	44
	44
<u> •</u>	44
3.2.19.4. pH stability of the <i>Bacillus subtilis</i> NRC-B233	
1 3	45
	46
•	46
	46
3.2.20. Chromatographic analysis of dextran hydrolytic products	-
	47
3.2.21.1 Effect of dextranase enzyme on dextran produced by	.,

	a bacterium isolated from sugar cane	47
3.2.21.2.		
	cane juice viscosity	
3.2.21.3.	Effect of the dextranase enzyme activity using different	
	types of dextran and various carbohydrates	49
4. EXPEI	RIMENTAL RESULTS	
4.1.	Screening of the (5) bacteria for dextranase production	50
4.2.	Characteristics of dextranase producing bacteria	50
4.3.	Identification by 16-23S intergenic region	51
4.4.	Screening of the food wastes and cheap food materials	5
	for the production of dextranase by Bacillus subtilis	
	NRC-B233	
4.5.	Heat shock experiment	
4.6.	Environmental and nutritional studies on the production of	
	dextranase by <i>Bacillus subtilis</i> NRC-B233	.57
4.6.1.	Effect of temperature on the production of incubation	
	dextranase by <i>Bacillus subtilis</i> NRC-B233	57
4.6.2.	Effect of incubation period on the production of	
	dextranase by <i>Bacillus subtilis</i> NRC-B233	
4.6.3.	Effect of moisture content on the production of dextranase	
	by Bacillus subtilis NRC-B233	60
4.6.4.	Effect of initial pH on the production of dextranase by	
	Bacillus subtilis NRC-B233	65
4.6.5.	Effect of some salts on the production of dextranase by	
1.6.6	Bacillus subtilis NRC-B233	65
4.6.6.	Effect of different concentration of chromium chloride	
	(CrCl ₃) on the production of dextranase by <i>Bacillus</i>	"
4 6 7	subtilis NRC-B233	66
4.6.7.	Effect of different organic nitrogen sources on the	75
1 6 0	production of dextranase by <i>Bacillus subtilis</i> NRC-B233	13
4.6.8.	Effect of different concentration of peptone on the	75
4.6.9.	production of dextranase by <i>Bacillus subtilis</i> NRC-B233 Effect of different carbon sources on the production of	75
4.0.9.	dextranase by <i>Bacillus subtilis</i> NRC-B233	78
4.6.10.	· · · · · · · · · · · · · · · · · · ·	70
4.0.10.	production of dextranase by <i>Bacillus subtilis</i> NRC-B233	78
4.7.	Effect of mutation on the activity of dextranase	83
4.7.1.	Repeated patch of mutation	83
4.8.	Storage stability	83
4.9.	Partial purification of dextranase produced by <i>Bacillus</i>	55
1.2.	subtilis NRC-B233	86
4.9.1.	Partial purification of dextranase produced by <i>Bacillus</i>	55
,.1.	subtilis NRC-B233 by ultra filtration	86
	J	

4.9.2.	Fractional precipitation by ethanol	86
4.9.3.	Fractional precipitation by acetone	86
4.10.	Properties of <i>Bacillus subtilis</i> NRC-B233 dextranase	91
	Effect of pHs on relative dextranase activity	91
4.10.2.	Effect of different incubation temperatures on Bacillus	
	subtilis NRC-B233 dextranase activity	91
4.10.3.	Thermal stability of Bacillus subtilis NRC-B233	
	dextranase enzyme	96
4.10.4.	pH stability of Bacillus subtilis NRC-B233 dextranase	
	activity	96
4.10.5.	Effect of different salts on Bacillus subtilis NRC-B233	
	dextranase activity	99
4.10.6.	Effect of different concentrations of the optimum salts	
	on Bacillus subtilis NRC-B233 dextranase activity	99
4.10.7.	Effect of different concentrations of NaCl on Bacillus	
	subtilis NRC-B233 dextranase activity	104
	Effect of different concentrations of substrate on <i>Bacillus</i>	
	subtilis NRC-B233 dextranase activity	104
	Chromatographic analysis of dextran hydrolytic products	109
4.13.	Application of <i>Bacillus subtilis</i> NRC-B233 dextranase	
	enzyme	109
4.13.1.	Effect of Bacillus subtilis NRC-B233 dextranase on	
	dextran produced by a bacterium isolated from sugar	
	cane	109
4.13.2. I	Effect of <i>Bacillus subtilis</i> NRC-B233 dextranase enzyme	
	concentrations on sugar cane juice viscosity	109
	Effect of Bacillus subtilis NRC-B233 dextranase on	
	different types of dextran and various carbohydrates	114
	DISCUSSION	116
	SUMMARY	133
	REFERENCES	138
	ARABIC SUMMARY	

List of Tables

	Р	'age
Table (1):	Efficacy of bacterial isolates for dextranase production	54
Table (2):	Screening of the wastes and cheap materials for the	
. ,	production of dextranase by <i>Bacillus subtilis</i> NRC-B233	56
Table (3):	Effect of incubation temperature on the production of	
	dextranase by <i>Bacillus subtilis</i> NRC-B233 and final	
	pH's values under two fermentation techniques	57
Table (4):	Effect of incubation period on the production of	
1 4 510 (1)1	dextranase by <i>Bacillus subtilis</i> NRC-B233 under static	
	condition at 37 °C	62
Table (5):	Effect of moisture content on the production of	02
Table (3).	dextranase by <i>Bacillus subtilis</i> NRC-B233	64
Table (6):	Effect of initial pH on the production of dextranase	0-1
Table (0).	by Bacillus subtilis NRC-B233	68
Table (7):	Effect of some salts on the production of dextranase by	00
Table (7):	Bacillus subtilis NRC-B233	70
Table (9).		
Table (8):	Effect of different concentrations of chromium chloride	
	(CrCl ₃) on the production of dextranase by <i>Bacillus</i>	72
T.1.1. (0).	subtilis NRC-B2333	72
Table (9):	Effect of different organic nitrogen sources on the	7.
T 11 (10)	production of dextranase by <i>Bacillus subtilis</i> NRC-B233	75
Table (10):	Effect of different concentrations of peptone on the	
	production of dextranase by <i>Bacillus subtilis</i> NRC-B233	77
Table (11):	Effect of different carbon sources on the production of	0.0
T 11 (44)	dextranase by <i>Bacillus subtilis</i> NRC-B233	80
Table (12):	Effect of different concentration of starch on the	
	production of dextranase by <i>Bacillus subtilis</i> NRC-B233	82
, ,	Effect of mutation on the activity of dextranase	85
Table (14):	Partial purification of <i>Bacillus subtilis</i> NRC-B233	
	dextranase by Bacillus subtilis NRC-B233 by ultra –	
	filtration and acetone	89
Table (15):	Fractional precipitation of <i>Bacillus subtilis</i> NRC-B233	
	culture filtrate by ethanol	90
Table (16):	Fractional precipitation of Bacillus subtilis NRC-B233	
	culture filtrate by acetone	91
Table (17):	Effect of substrate pHs on Bacillus subtilis NRC-B233	
	dextranase activity	93
Table (18):	Effect of different incubation temperatures on Bacillus	
	subtilis NRC-B233 dextranase activity	95
Table (19):	Thermal stability of Bacillus subtilis NRC-B233	
	dextranase enzyme	98

Table (20):	pH stability of the partially purified Bacillus subtilis	
	NRC-B233 dextranase	99
Table (21):	Effect of different salts on Bacillus subtilis NRC-B233	
	dextranase activity	101
Table (22):	Effect of different concentrations of the optimum salts	
	on Bacillus subtilis NRC-B233	103
Table (23):	Effect of different concentrations of NaCl on Bacillus	
	subtilis NRC-B233 dextranase activity	106
Table (24):	Effect of different concentrations of substrate on	
	Bacillus subtilis NRC-B233 dextranase activity	108
Table (25):	The effect of different Bacillus subtilis dextranase	
	concentrations on sugar cane juice viscosity	112
Table (26):	Effect of Bacillus subtilis NRC-B233 dextranase on	
` ,	different types of dextran and various carbohydrates	116