Rate of the detection of anti-hepatitis B core antibody (Anti-HBc) among blood donors negative for hepatitis B surface antigen (HBsAg)

Thesis
Submitted for partial fulfillment of
The Master Degree in Microbiology and Immunology

By
Waleed Anter A. Ismael
(M.B., B.ch)

Under the supervision of:

Prof. Dr. Nehal Abd El-Hamid Deraz

Professor of Microbiology & Immunology Faculty of medicine, Ain Shams University

Dr. Mona Hamed El-Shokry

Assistant Professor of Microbiology & Immunology Faculty of medicine, Ain Shams University

Major General (Med.) Wael Ahmed Abd El-Hamid

Head of Kobry El-koba Armed Forces Central Laboratories Professor of Microbiology & Immunology Military Medical Academy

> Faculty of Medicine Ain Shams University 2011

البقرة/ آية (٣٢)

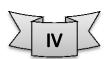
Acknowledgment

First and foremost, I am very grateful to Allah, the most Gracious, and the most Merciful, who granted me the ability to perform this thesis.

Any attempt to describe the contributions of Professor Doctor / Mouchira Fayek Helmy Professor of Microbiology and Immunology, Faculty of Medicine, Ain Shams University, would be partial and inadequate; her support and supervision contributed a lot to the final shape of this work

I would like to express my deepest gratitude and sincere thanks to Professor Doctor / Nehal Abd El-Hamid Deraz Professor of Microbiology and Immunology, Faculty of Medicine, Ain Shams University; I appreciate very much her wisdom, understanding and most valuable support.

No word can ever express my profound gratitude and my ultimate thanks to Doctor / Mona Hamed Elshokry, Assistant Professor of Microbiology and Immunology, Faculty of Medicine, Ain Shams University, for her skillful participation, continuous advice, and for her efforts in assisting me throughout the whole work.


My deepest gratitude and lots of thanks goes to Major General (Med.)/ Wael Ahmed Abd El-Hamid the Head of the Central Laboratories at Kobry El-koba Armed Forces Hospital for his invaluable administrative assistance, for being generous with his time, effort, encouraging and guiding me all through this work; I am also indebted to the Staff Members of The Virology Department of the Armed Forces Central Laboratory for their confidence and support.

Waleed Anter Ali
2011

Table of Contents

ACKNOWLEDGMENT	3
TABLE OF CONTENTS	5
LIST OF ABBREVIATIONS	6
LIST OF TABLES	8
LIST OF FIGURES	9
INTRODUCTION	10
AIM OF THE WORK	12
REVIEW OF LITERATURE	13
HISTORY OF HEPATITIS B VIRUS	14
THE VIRUS	21
MUTANTS	39
EPIDEMIOLOGY	45
CLINICAL MANIFESTATIONS	49
LABORATORY ASSAYS OF HBV INFECTION	67
TRAETMENT AND PREVENTION OF HBV	73
MATERIAL AND METHODS	93
RESULTS	115
DISCUSSION	120
CONCLUSION	129
SUMMARY	130
REFERENCES	132
ARABIC SUMMARY	155

List of Abbreviations

ADV	ADEFOVIR DIPIVOXIL
AFP	
<i>ALT</i>	ALANINE AMINOTRANSFERASE
Anti-HBc	
Anti-HBe	Antibody to hepatitis B "e" antigen
Anti-HBs	ANTIBODY TO HEPATITIS B SURFACE ANTIGEN
Anti-HBx	
ASSLD	AMERICAN ASSOCIATION FOR THE STUDY OF LIVER DISEASE
<i>AST</i>	ASPARTATE AMINOTRANSFERASE
Au	
<i>bp</i>	BASE PAIR
cccDNA	
dATP	DEOXYADENOSINE TRIPHOSPHATE
DNA	DEOXYRIBONUCLEIC ACID
<i>EASL</i>	EUROPEAN ASSOCIATION FOR THE STUDY OF LIVER
ELISA	ENZYME-LINKED IMMUNOSORBENT ASSAY
<i>ETV</i>	ENTECAVER
GSHV	GROUND SQUIRREL HEPATITIS VIRUS
HAV	
HBcAg	
HBeAg	HEPATITIS B EARLY ANTIGEN
HBsAg	
HBV	HEPATITIS B VIRUS
HBxAg	
HCC	HEPATOCELLULAR CARCINOMA
HCV	HEPATITIS C VIRUS
HDV	HEPATITIS DELTA VIRUS

HIV	HUMAN IMMUNODEFICIENCY VIRUS
<i>IFN</i> - α	INTERFERON ALFA
<i>IFN-β</i>	INTERFERON BETA
<i>IFN-</i> ω	INTERFERON OMEGA
	INTERFERON GAMMA
<i>IFN- λ</i>	INTERFERON LAMBDA
	International Normalized Ratio
LAM	LAMIVUDINE
LdT	
	MILLION UNITS
ORFs	OPEN READING FRAME
PCR	POLYMERASE CHAIN REACTION
PEG-IFN	PEGYLATED INTERFERON
POL	POLYMERASE
	PROTHROMBIN TIME
RT	
RT-PCRRE	VERSE TRANSCRIPTION POLYMERASE CHAIN REACTION
TDF	TENOFOVIR DISOPROXIL FUMARATE
ULN	UPPER LIMIT OF NORMAL
	World Health Organization
WHV	WOODCHUCK HEPATITIS VIRUS

List of Tables

TABLE (1)	HBV SEROLOGICAL MARKERS IN HEPATITIS PATIENTS	36
TABLE (2)	SEROLOGICAL TEST FINDINGS AT DIFFERENT STAGES OF HBV	
	INFECTION AND IN CONVALESCENCE	37
TABLE (3)	OVERVIEW OF INTERFERONS AND ORAL ANTIVIRAL DRUGS	
	CURRENTLY APPROVED FOR THE TREATMENT OF HBV INFECTION	85
TABLE (4)	PREDICTORS OF RESPONSE TO ANTIVIRAL THERAPY	89
TABLE (5)	TESTS BEFORE ANTIVIRAL TREATMENT	91
TABLE (6)	ENZYGNOST ANTI-HBC PROVIDED REAGENTS	97
TABLE (7)	DNA MINI KIT FOR DNA PURIFICATION FROM SERUM OR PLASMA	105
TABLE (8)	A READY TO USE HBV TM PCR KIT (96)	114

List of Figures

FIGURE (1)	REPRESENTATION OF DNA-HEPATITIS B VIRUS STRUCTURE	24
FIGURE (2)	HEPATITIS B SURFACE ANTIGEN	25
FIGURE (3)	ANTIBODY TO HEPATITIS B SURFACE ANTIGEN	26
FIGURE (4)	HEPATITIS B CORE ANTIGEN	27
FIGURE (5)	IM HEPATITIS B CORE ANTIBODY	28
FIGURE (6)	TOTAL HEPATITIS B CORE ANTIBODY	29
FIGURE (7)	HEPATITIS B E ANTIGEN	30
FIGURE (8)	ANTIBODY TO HEPATITIS E ANTIGEN	31
FIGURE (9)	HBV DNA	33
	NATURAL HISTORY OF HEPATITIS B VIRUS INFECTION FOLLO ACUTE INFECTION	
FIGURE (11)	EVOLUTION OF HBV MARKERS IN ACUTE AND CHRONIC INFEC	<i>TIO</i> N 53
FIGURE (12)	TEST PROCEDURE AND PROGRAMMING USING THE BEP® III	103
FIGURE (13)	THE QIAAMP MINELUTE VIRUS SPIN PROCEDURE	110
	MULTIPLEX QUANTITATIVE PCR SYSTEMS; RUN DATE: JANUA 2008	
	MULTIPLEX QUANTITATIVE PCR SYSTEMS; RUN DATE: FEBRU	
	MULTIPLEX QUANTITATIVE PCR SYSTEMS; RUN DATE: FEBRU	
FIGURE (17)	SCHEMATIC REPRESENTATION OF THE STUDY DESIGN	119

Introduction

Hepatitis B virus (HBV) is a hepatotropic Deoxynucleic acid (DNA) virus belonging to the genus Orthohepadnavirus, family Hepadnaviridae (*Tiollais et al.*, 1985).

The virus infects only human and some other non-human primates. It is transmitted mainly by infectious blood, serum or plasma. Once inside the host, HBV is transported through the blood stream to the liver, which is the primary site of infection (Korba et al., 1989; Uemoto et al., 1998).

Hepatitis B surface antigen (HBsAg) is the first marker to appear in the circulation prior to biochemical evidence of liver damage or the onset of jaundice. Hepatitis B core antibody (anti-HBc) is detectable 2-4 weeks after the appearance of the surface antigen; it persists throughout the infection and after recovery (Harrison et al., 2000).

It was demonstrated that in some individuals negative for HBsAg and positive for anti-HBc, HBV continue to replicate which may explain why some blood derivatives, negative for HBsAg but positive anti-HBc, are able to transmit the infection, both after transfusion and after transplantation of organs (Ben-Ayed et al., 2001).

Isolated anti hepatitis B core (anti-HBc), which is defined as positive Anti-HBc with undetectable HBsAg and Hepatitis B Surface antibody (anti-HBs), may occur in any of several situations: (i) a false-positive Anti hepatitis B core antigen (anti-HBc) result; (ii) low levels of HBV replication inside the hepatocyte, without detectable production of HBsAg; (iii) the window phase of acute HBV infection; (iv) the loss of anti-HBs with time or failure to develope antibody response against the antigen after infection; or (v) the presence of a vaccine escape mutant, not detected by most of the currently available HBsAg detection tests (Al-Mekhaizeem et al.,2001; Behzad-Behbahani et al.,2006).

AIM OF THE WORK

The aim of this work is to detect Anti-HBc among blood donors negative for HBsAg in order to evaluate the safety of this blood.

REVIEW OF LITERATURE

HISTORY OF HEPATITIS B VIRUS

Hepatitis is a general term meaning inflammation of the liver and can be caused by a variety of different viruses such as hepatitis A, B, C, D and E. Since the development of jaundice as a characteristic feature of liver disease, a correct diagnosis can only be made by testing patients' sera for the presence of specific antiviral antigens or antibodies (Robinson, 1995; Mahoney and Kane, 1999; Hollinger and Liang, 2001).

The existence of a parenterally transmitted form of hepatitis was documented by Lurman (MacCallum, 1947). He reported the development of jaundice in 15% of 1,289 shipyard workers in Bremen, 2 to 8 months after they had received smallpox vaccine prepared from human "lymph". Subsequent outbreaks of hepatitis were eventually traced to the use of improperly sterilized syringes and needles among patients who required parenteral inoculations and among those receiving tattoos (Hasegawa et al., 1991; Fourrier et al., 1999).

In 1937, it was reported from England that approximately 40% of 109 individuals receiving inoculations of a single batch of human measles convalescent serum developed jaundice after incubation periods of up to 114 days. This was followed by an outbreak in British troops given filtered human mumps convalescent plasma (Beeson et al., 1944). These clinical entities were grouped together as "homologous serum jaundice" (Merril et al., 1972). In 1937, Findlay and MacCallum described cases of jaundice occurring 2 to 7 months after inoculation of volunteers with an attenuated strain of yellow fever vaccine prepared with the addition of human serum to stabilize the product (Findlay and MacCallum, 1938). Human serum was subsequently implicated as the vehicle of transmission. It was also observed that the incubation period of parenterally transmitted hepatitis was much longer than that described for infectious hepatitis. It is assumed that these outbreaks were caused by HBV infection, but a hepatitis C virus (HCV) etiology also cannot be excluded (Franco et al., 1992).