

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

ELECTRICAL POWER AND MACHINE DEPARTMENT

Power Balance and Control of (UAV)

By

Eng. Karim Nabil Mobariz Hussien

A thesis submitted to the Faculty of Engineering-Ain Shams University in partial fulfillments of the requirements for the M.Sc. degree in Electrical Power and Machines Engineering

Under Supervision of

Prof. Dr. Mohamed Abd El-Latif Badr

Electric Power and Machines Department Faculty of Engineering, Ain shams University

Dr. Mohamed Abd EL-Aziz Hassan

Electric Power and Machines Department Faculty of Engineering , Ain shams University

Dr. Mohamed Said Sayed Ahmed

Military Technical Collage

Cairo 2010

جامعة عين شمس كلية الهندسة قسم هندسة القوى و الألات الكهربية

تعريف بمقدم الرسالة

اسم الطالب : كريم نبيل مبارز حسين

الدرجة العلمية الأولىي : بكالوريوس الهندسة الكهربيه

الجامع العسكرية : الكلية الفنية العسكرية

سنة الحصول على الدرجة: ٢٠٠٤م

جهة العمال : القوات المسلحة

اسم الجه ـــــة : القوات الجوية

Statement

This dissertation is submitted to Ain Shams University for the Degree of

M.Sc. in Electrical Power Engineering .

The author has carried out the work included in this thesis at the

Department of Electrical Power Engineering, Faculty of Engineering, Ain

Shams University.

No part of this thesis has been submitted for a degree or a qualification at

any other University or institute.

Name: Karim Nabil Mobariz Hussien

Signature:

Date: - - 2010

Ī

Dedication

To my father, my mother and my wife.

Acknowledgement

Thanks to Allah before and after, who blessed me with dedicated supervisors, and supported me until the conclusion of this work.

The author is indebted to many people for their advice, assistance and encouragement while advancing in his thesis, especially Professor Dr. Mohamed Abd El Aziz, Associate Prof. of Electrical Power Engineering, Ain Shams University, for his supervision, valuable comments and suggestions.

The author also wishes to express his deepest thanks to Dr.Mohamed Sayed, Assistant Professor of electrical engineering, Military Technical Collage, for his supervision, guidance and assistance throughout the whole thesis.

The author extends his wishes to Professor Dr. Mohamed Abd EL- Lateef Badr, Professor of Electrical Power Engineering, Faculty of Engineering, Ain Shams University for his valuable discussions, guidance, support, encouragement and supervision throughout the course of this research.

Acknowledgment is also extended to all staff members and colleagues in the Automotive Engineering Department, Ain shams university.

Abstract

Unmanned aerial vehicles suffer from inherent instabilities in the pitch axis due to their small size and the lack of pilot feedback. Therefore, a flight control system is needed whose primary function is the artificial stabilization of the aircraft. This system is known as the pitch axis stability augmentation system.

Control augmentation system is a common part of modern airplane control. It is best characterized as a form of tracking control. In this thesis we enhanced the performance of PID controller when applied to the problem of position control. The investigation is based on a permanent magnet DC motor (PMDC) servo system.

Furthermore, the whole power system for the UAV has been designed in such that it would function autonomously. This means that the entire UAV design is autonomous.

This thesis is devoted to the design of an adequate automatic flight control system to stabilize the attitudes and natural modes of a flying fixed wing (Aerosonde) UAV under exogenous disturbances. Towards that objective, a nonlinear mathematical model for the underlying aircraft is developed and linearized yielding a state-space model. Consequently, this linearized model is decoupled into two smaller models associated to the longitudinal and lateral motions of the aircraft. The flight control system is designed to augment both stability and control for an unmanned aerial vehicle called Aerosonde. This control system is designed using Linear Quadratic Gaussian technique. The performance of the control system is compared with the performance of a classical PID controller in terms of input tracking and disturbance rejection properties.

Finally, the design has been experimentally verified using an interface card to control the angle of servo motor. The results of experimental verification of the control system show that LQG technique results in better transient performance than the classical one.

TABLE OF CONTENTS

LIST of TABLES	X
LIST OF ABBREVIATIONS	XI
LIST OF FIGURES	XII
(1) INTRODUCTION	1
1.1 Background	1
1.2 Flight Control System.	2
1.3 Problem Nature	4
1.4 Classical Control	6
1.5 Advanced Control.	6
1.5.1 Robust Control	6
1.5.2 Adaptive Control	7
1.5.3 Predective Control	7
1.5.4 Optimal Control	7
1.5.5 Intelligent Control	7
1.6 Aerospace Performance Specification	7
1.7 Thesis Outlines	8
(2) UAV MODELING	9
2.1 Introduction	9
2.2 Axes Systems and Rotation	10
2.2.1 Earth Axis System	10
2.2.2 Stability Axis System	12
2.3 Aerodynamics Forces and Moments	12
2.3.1 The Equations of Motion of a Rigid Body Aircraft	14
2.3.1.1 Forces and Moments Acting on Aircraft	14
2.3.2 External Forces and Moments	18

	2.3.2.1 Gravitational and Thrust Forces	18
	2.3.2.2 Propulsive Forces and Moments	19
	2.4 Reference Frames and Coordinate Transformation	19
	2.5 Kinematic Equations	22
	2.6 Navigation Equations	23
	2.7 Flat-Earth, Body axes 6-DOF Equations of Aircraft Motion	24
	2.8 The Equations Representing the Aircraft Motion	24
	2.9 Complete Aircraft Model	26
	2.10 Trim and Linearization Model of Aerosonde UAV	28
	2.10.1 Small Disturbance	29
	2.11 The Equations of Motion in State-Space Form	32
	2.11.1 The Equations of Longitudinal Motion	33
	2.12 Controllability and Observability Check	37
	2.12.1 Condition for Complete State Controllability	37
	2.12.2 Condition for Complete State Observability	38
	2.13 Controllability and Observability Check for the Aircraft Model Usi MATLAB Function	•
	2.13.1 Controllability Check	38
	2.13.2 Observability Check	39
	2.14 Conclusion	39
(3)	DYNAMIC MODEL OF A PERMANENT MAGNET DC MOTOR	41
	3.1 Electrical Characteristics	41
	3.2 Mechanical Characteristics	43
	3.3 State Space Representation	44
	3.4 Transfer Function Block Diagram	45
	3.5 The PM DC Motor Parameters	47

3.6 Controllability and Observability Check for the PMDC motor	Using
MATLAB Function	48
3.6.1 Controllability Check	48
3.6.2 Observability check	49
(4) CONTROLLER DESIGN TECHNIQUES	50
4.1 Classical Control	50
4.1.1 PID Control by Ziegler and Nichols	50
4.1.2 PID Control by Genetic Algorithm (GA) Technique	52
4.1.2.1 GA Method Overview	53
4.1.2.2 The Basic Algorithm for GA	53
4.1.2.3 The Algorithm	55
4.1.2.4 Population	55
4.1.2.5 Fitness	55
4.1.2.6 Selection of the Fittest	55
4.1.2.7 Crossover	56
4.1.2.8 Mutation	56
4.2 LQG Controller	59
4.2.1 LQR.	60
4.2.2 Kalman Filter	61
4.2.3 LQG	61
(5) SIMULATION AND RESULTS	63
5.1 Open Loop Response	63
5.2 SCAS Designing and Simulation Results	65
5.2.1. SCAS Designing by PID	65
5.3 SCAS Designing by LQG	68
5 2 1 I OP Controller	69

5.3.2 Kalman Filter	69
5.3.3 Prefilter Design	70
5.4 Servo Motor Result and Simulation	73
5.4.1 Open loop response of the PMDC Motor	73
5.4.2 Closed Loop Response Using PID Controller	74
5.4.3 The Response of SCAS PID with Actuator Action	75
5.4.4 The Response of SCAS LQG Controller	76
5.5 Conclusions	77
(6) POWER MANAGEMENT AND EXPERIMENTAL WORK	78
6.1 Introduction	78
6.2 UAV's Power Systems	83
6.3 Power Autonomation	86
6.4 Servos.	89
6.5 Servo Controller	92
6.5.1 interfacing using SV203	92
6.5.2 Interface Connection using USB Experiment Interface Board	
K8055	96
6.6 Summary	97
(7) CONCLUION AND FUTURE WORK	98
7.1Conclusions	98
7.2 Suggesion Future Work	99
Appendix A	100
Paper Published	100
DEFEDENCES	112

LIST OF TABLES

Γables	
2.1 Trim Result of the Operating Point	36
3.1 Motor Parameter	48
4.1 PID Tuning Characteristics	51
4.2 Z-N (continuous cycling method) Tuning Rules	52
4.3 GA-PID Controller Parameters	59
5.1 Characteristics of Longitudinal Dynamic Stability	63
6.1 Servo Requirements	80
6.2 Power Consumption	84
6.3 Power Supply Selection	85
6.4 Jumper SK5, SK6 Settings	97

LIST OF ABBREVIATIONS

UAV Unmanned Air Vehicle

PID Proportional, Integral and Derivative

LQR Linear Quadratic Regulator Unmmand Air vehicle

LQG Linear Quadratic Gaussian

Z-N Ziegler and Nichol

SAS Stability augmentation system

CAS Control augmentation system

SCAS Stability and control augmentation system

OP-AMP Operational amplifier

MIMO Multiple-Input And Multiple-Output

AUVSI Association Unmanned Vehicle System International

c.g center of gravity

6DOF Six Degree of Freedom

PMDC Permanent Magnet Direct Current

LIST OF FIGURES

Figu	ure	Page
1.1	Functions of Flight Control System	5
1.2	General scheme of UAV Flight Control System	7
2.1	Basic Control Response Relationships	10
2.2	Conventional Earth Axes	11
2.3	Reference Lines in the Aircraft Body	11
2.4	Body and Stability Frames Definition	13
2.5	Gravitational Force Acting on a Conventional Aircraft	18
2.6	Relationships between Body and Inertial Frames	20
2.7	The Angular Orientation and Velocity of the Body Axis System	22
2.8	Internal Structure of the Plant Model	27
2.9	Simplified Internal Structure of the Plant Model	28
2.10	Trimmer block set on the MATLAB SIMULINK	29
3.1	Electrical Representation of a DC Motor	42
3.2	Block Diagram Representation of eqns. of armature current and anguler	
	velocity of DC Motor	45
3.3	Block Diagram of the DC Motor	46
3.4	Overall Transfer Function for the DC Motor	47
3.5	Overall Transfer Function with output $[heta_L]$	47
4.1	Flow Chart of the General Genetic Algorithm	54
4.2	A Typical Simple Crossover Method	56
4.3	A Typical Mutation Method	57
4.4	SIMULINK Optimization Structure	58
4.5	Signal Constraint Window	58
5.1	Open-Loop Response Of The Pitch Rate To A Step In The Elevator	64
5.2	Root Locus for the Open-Loop	64
5.3	Step Response with the Z-N PID	66
5.4	Effect of Varying Kq by Root-Locus Plot	66
5.5	SCAS with PID Controller	67
5.6	Step Response with the GA PID Controller	67

5.7	Output Responses to Disturbance Input	68
5.8	Choosing the Best Relative Weighting between Qw and Rw	69
5.9	Pitch-Rate Control Augmentation System Using LQG Controller	71
5.10	Step Response with the LQG Controller	72
5.11	Output Response to Disturbance Input	72
5.12	Open Loop Block Diagram of the PMDC Motor	73
5.13	Open Loop Response of the PMDC Motor	74
5.14	Closed Loop Block Diagram of the PMDC Motor	74
5.15	Closed Loop Response of the PMDC Motor	75
5.16	SCAS PID with Actuator Response	75
5.17	The Step Response of SCAS PID with Actuator Action	76
5.18	SCAS LQG with Actuator Response	76
5.19	The Step Response of SCAS LQG with Actuator Action	77
6.1	Servo Locations in UAV model	79
6.2	Servo Feedback Loop Block Diagram	81
6.3	Input Signal Used to Control Servos	82
6.4	Power Dissipation Graph	86
6.5	Dual OP Amp Circuit	87
6.6	Power System Schematic	89
6.7	UAV Model	90
6.8	Simulation Setup	90
6.9	Typical Servo	92
6.10	Timing Characteristics of Servo PWM Signal Control	92
6.11	SV203 Controller Board	93
6.12	Servo Connected to SV203	94
6.13	Experimental Open Loop Control System Setup Using the Servo Controller	
	SV203	95
6.14	Servo's Feedback Window	96
6 15	USB Experiment Interface Board	97