

Role of High Definition Bronchoscopy And I- Scan Technology Compared To Standard White Light Bronchoscopy In Patients With Suspected Lung Cancer

Thesis

Submitted for partial fulfillment of MD degree in Chest Diseases & Tuberculosis

Hoda Atiatullah Mohamed Mohamed

M.B., B.Ch, M Sc in Chest Diseases & Tuberculosis

Supervised by

Professor/ Yasser Mostafa Mohamed

Professor of Chest Diseases Ain Shams University

Professor / Ashraf Mokhtar Madkour

Professor of Chest Diseases Ain Shams University

Professor / Iman Hassan Galal

Professor of Chest Diseases Ain Shams University

Doctor/Ashraf Abbas Elmaraghy

Assisstant Professor of Chest Diseases Ain Shams University

Doctor/ Nermin Mohamed Abd Raboh

Lecturer of pathology Ain Shams University

Faculty of Medicine Ain Shams University 2018

سورة التوبة الآية (١٠٥)

Aeknowledgment

- First and foremost, thanks to ATAN, the most merciful and the greatest beneficent.
- I would like to express my great appreciation to **Prof.**Dr. Yasser Mostafa, Professor of chest Diseases,

 Faculty of Medicine, Ain Shams University; for his sincere effort, valuable advice and great confidence that he gave me throughout the whole work.
- I am deeply grateful to **Prof Dr. Ashraf Madkour**, Professor of Chest Diseases, Ain Shams University; for his great directions & continuous advice all through the work. His time and effort are clear in every part of this work. Many thanks & gratitude for him.
- I would like to thank **Prof Dr Eman Hassan**, Professor of Chest Diseases, Ain shams university; for her great help, efforts and continous advice throughout the whole work.
- I would like to express my great appreciation to **Dr.**Ashraf El maraghy, Professor of chest diseases,

 Faculty of Medicine, Ain Shams University; for his sincere effort, valuable advice and great confidence that he gave me throughout the whole work.
- I am very grateful to **Dr Nermeen Mohamed**, Lecturer of Pathology, Ain Shams University; for her great help, efforts and continous advice throughout the whole work.

Contents

Subjects	Page
List of Abbreviations	I
List of Tables	IV
List of Figures	VIII
Introduction	1
Aim of the study	4
Review of Literature	
- Chapter 1: Early diagnosis of lung cancer	·5
- Chapter 2: High definition bronchoscopy	and I-scan63
Patients & Methods	82
• Results	91
• Discussion	116
• Summary	130
• Conclusion	134
Recommendations	135
References	136
Arabic summary	

List of Abbreviations

Atypical adenomatous hyperplasia AAH :

AC Atypical carcinoid

American colleague of chest physician ACCP

AF Autofluorescence

Autofluorescence bronchoscopy **AFB**

AIS Adenocarcinoma in situ

ASD Angiogenic squamous dysplasia

ATS **American Thoracic Society**

BAC Bronchioloalveolar carcinoma

CCD Charged couple device

CE Contrast enhancement

CIS Carcinoma in situ

CLE Confocal laser endomicroscopy

Chronic obstructive lung disease COPD

CP-EBUS Convex probe endobronchial ultrasound

Closed Suction Valve CSV

CT Computed tomography

digital imaging and communications in **DICOM**

medicine

Diffuse idiopathic pulmonary

DIPNECH

neuroendocrine cell hyperplasia

EBUS Endobronchial ultrasound

3 Tist of Abbreviations &

eCLE : Endoscopic Confocal laser endomicroscopy

EGFR : Epithelial derived growth factor

ENB: Electromagnetic Navigation Bronchoscopy

ERS: European Respiratory Society

EWC: Extended working channel

: Fourier domain Optical Coherence

FD-OCT Tomography

HD: High definition

HDWLE: high-definition white light endoscopy

HMB: High Magnification Bronchovideoscopy

: International Association for the Study of IASLC

Lung Cancer

LDCT : Low dose computed Tomography

LIFE: Light imaging fluorescence endoscope

LPA : Lepidic predominant adenocarcinoma

MIA : Minimally invasive adenocarcinoma

mSv : Millisievert

NBI : Narrow Band Imaging

NCI : National cancer institute

OCT : Optical Coherence Tomography

pCLE: Probe-based Confocal laser endomicroscopy

PCR : Polymerase chain reaction

PDT: Photodynamic therapy

Tist of Abbreviations &

PIU: Probe interface unit

RAR : Retinoic acid receptor

RCH : Reserve cell hyperplasia

RGB: Red Green Blue

ROSE : Rapid on-site evaluation

RP-EBUS: Radial probe endobronchial ultrasound

SAFE: System of autofluorescence endoscopy

SCC : Squamous cell carcinoma

SE : Surface enhancement

TC: Typical carcinoid

: Time-domain Optical Coherence

TD-OCT Tomography

TE: Tone enhancement

VATS: Video assisted thoracoscopy

WLB: White Light Bronchoscopy

List of Tables

Table No.	Title	Page
Table (1)	Histologic classification of lung cancer.	7-8
Table (2)	Endobronchial findings during	30
	autofluorescence.	
Table (3)	HD video bronchoscopic series technical	66
	specifications.	
Table (4)	Number of sites detected by different	75
	techniques.	
Table (5)	I-scan image enhancement technology	86
	settings.	
Table (6)	White Light Bronchoscopic Image Scoring.	89
Table (7)	I-scan image Scoring.	89
Table (8)	Demographic characteristics of the studied	91
	patients.	
Table (9)	Patient types among the studied patients	92
Table (10)	Chest CT findings in the studied patients	92
Table (11)	Site and Location of Masses by CT in the	93
	studied patients.	
Table (12)	The Type of Anesthesia used in the study.	93
Table (13)	Bronchoscopy procedures, post	94
	bronchoscopic Complications in the studied	
	patients.	

🛢 List of Tables 🗷

Table No.	Title	Page
Table (14)	Visual findings of Primary suspected lesion	95
	by HDWLB.	
Table (15)	Visual findings of primary suspected lesion	95
	by I-scan1, I-scan 2, I-scan 3.	
Table (16)	Visual findings of area surrounding the	96
	primary lesion by HDWLB.	
Table (17)	Visual findings of area surrounding the	96
	primary lesion by I-scan 1, I-scan 2, I-scan 3.	
Table (18)	Visual findings of normal non suspected area	97
	by HDWLB.	
Table (19)	Visual findings of normal non suspected area	97
	by I-scan1, I-scan 2, I-scan 3.	
Table (20)	Pathological results of endobronchial	98
	biopsies from the primary suspected lesion.	
Table (21)	Pathological results of endobronchial	98
	biopsies from Diagnosed lung cancer	
	patients.	
Table (22)	Pathology results of endobronchial biopsies	99
	from the surrounding area to the primary	
	suspected lesion.	
Table (23)	Pathology results of endobronchial biopsies	99
	from the normal non suspected area.	
Table (24)	Comparison between CT finding and visual	100
	findings of HDWLB.	

🛢 List of Tables 🗷

Table No.	Title	Page
Table (25)	Comparison between HDWLB findings	102
	among the two types of patients.	
Table (26)	Comparison between smoking status as	103
	regard conventional bronchoscopy findings.	
Table (27)	Comparison between visual findings by	104
	HDWLB versus i-scan 1,2&3 bronchoscopy	
	as regards primary suspected lesion.	
Table (28)	Comparison between visual findings by	105
	HDWLB versus i-scan 1,2&3 bronchoscopy	
	as regards the surrounding area of primary	
	suspected lesion.	
Table (29)	Comparison between sex as regard lung	106
	cancer pathology.	
Table (30)	Comparison between different smoking	107
	status as regard lung cancer pathology.	
Table (31)	Comparison between age as regard lung	108
	cancer pathology.	
Table (32)	Comparison between visual findings by	109
	HDWLB as regards pathology of primary	
	suspected lesion.	
Table (33)	Comparison between visual findings by	111
	HDWLB as regards pathology of the	
	surrounding area to primary suspected	
	lesion.	

🛢 List of Tables 🗷

Table No.	Title	Page
Table (34)	Sensitivity and specificity of WLB and i-	113
	scan 1,2,3 in comparison to endobronchial	
	biopsies results.	
Table (35)	Sensitivity and specificity of i-scan 1,2,3 in	113
	prediction of HDWLB (suspected area).	
Table (36)	Sensitivity and specificity of i-scan 1,2,3 in	114
	prediction of HDWLB(the surrounding).	
Table (37)	Diagnostic accuracy of I scan in prediction	114
	of HDWLB results.	

List of Figures

Figure No.	Title	Page
Figure (1)	Auto fluorescence bronchoscopy images.	31
Figure (2)	Zoom endoscopes optical zoom by AF.	35
Figure (3)	Electronic magnification simply moves the	35
	image closer on the display.	
Figure (4)	Magnified view of the bronchial mucosa by	36
	high magnification bronchovideoscopy.	
Figure (5)	NBI technique overview.	38
Figure (6)	White light bronchoscopy and narrow band	38
	imaging.	
Figure (7)	NBI, tortuous blood vessels-squamous cell	39
	lung cancer.	
Figure (8)	NBI, abrupt ending blood vessels-squamous	40
	cell lung cancer.	
Figure (9)	NBI dotted vascular pattern-adenocarcinoma	40
	of the lung.	
Figure (10)	Radial EBUS, snow storm pattern of normal	41
	EBUS image in lung periphery.	
Figure (11)	Radial EBUS, image of the peripheral	42
	pulmonary lesion.	
Figure (12)	Schematic of confocal laser endomicroscopy	44
	principles.	

🕏 List of Figures 🗷

Figure No.	Title	Page
Figure (13)	Endoscope-based confocal laser	45
	endomicroscope.	
Figure (14)	Probe-based confocal laser endomicroscopy	46
	(pCLE) system.	
Figure (15)	Bronchial confocal microendoscopy	48
	imaging.	
Figure (16)	TD-OCT. and FD-OCT.	51
Figure (17)	OCT unit.	51
Figure.(18)	Bronchoscopic and OCT images of	52
	squamous cell carcinoma in the left upper	
	lobe.	
Figure.(19)	Components of ENB.	53
Figure.(20)	ENB procedure overview	54
Figure.(21)	Latest Pentax HD bronchoscope EB-1990i.	66
Figure.(22)	Instrument channel and lenses of HD	67
	bronchoscope.	
Figure (23)	Principle of surface enhancement (SE).	70
Figure (24)	Principle of CE.	71
Figure (25)	Principles of tone enhancement.	71
Figure (26)	PENTAX Medical -The ultimate video	72
	processor: EPK-i7000.	

🕏 List of Figures 🗷

Figure No.	Title	Page
Figure (27)	i-scan EPK-i5000 High-Definition Video	72
	Processor with HD bronchoscope.	
Figure (28)	HD and I-scan1 images of bronchial mucosa	73
Figure (29)	I-scan 2 and 3 images of vascular changes in	74
	bronchial mucosa.	
Figure (30)	Representative bronchoscopy images from	77
	two patients using normal white light	
	videobronchoscopy; HD-bronchoscopy HD+	
	i-scan.	
Figure (31)	Barrett's esophagus with nodularity and	79
	high-grade dysplasia.	
Figure (32)	HD bronchoscope PENTAX 3.2 Medical	85
	70K Series	
Figure (33)	PENTAX i-SCAN TM , EPK-i®5000	86
	videoprocessor	
Figure (34)	High grade dysplasia on top of squamous	115
	metaplasia by histopathological examination	
	of one of the specimens.	
Figure (35)	Squamous metaplasia, dysplasia as	115
	illustrated by histopathological examination	
	of the specimens.	

Introduction

Lung cancer is the leading cause of cancer mortality worldwide. Despite evolving knowledge of lung cancer, molecular genetics, and improved technology for the detection of lung cancer, the overall survival for lung cancer is still quite poor (5 year survival 17%) (Siegel et al., 2012).

Worldwide, lung cancer is the most common cancer among men in terms of both incidence and mortality, and among women has the third highest incidence, and is second after breast cancer in mortality (*World Cancer Report*, 2014).

Unfortunately, the majority of patients with recently diagnosed lung cancer are not operable. Patients presenting with inoperable non-small cell carcinoma of the lung associated with severe bronchial obstruction are at a high risk for developing post-obstructive pneumonia, respiratory failure or both. This often leads to death in weeks to months (*Celikoglu et al.*, 2008).

Early detection and surgical resection is essential for the treatment of lung cancer. Although the introduction of