A Comparison of Dexmedetomidine and Midazolam for Sedation during Minor Oral Surgery

Thesis

Submitted To Faculty of Oral and Dental

Medicine Cairo University In Partial

Fulfillment of The Requirements

For The Master Degree In

Oral & Maxillofacial Surgery

BY

Akram Abdo AL-Mansoori (BDS)

Sana'a University

(2006)

Faculty of Oral and Dental Medicine
Cairo University
(2012)

Supervisors

Prof. Mohamed Galal Beheri

Professor of Oral and Maxillofacial Surgery
Faculty of Oral and Dental Medicine, Cairo University
Head of Educational Dental Hospital, Cairo University

Prof. Mostafa Makhlouf

Professor of Anesthesiology
Faculty of Oral and Dental Medicine
Cairo University

Dr. Nadia Galal

Lecturer of Oral and Maxillofacial Surgery
Faculty of Oral and Dental Medicine
Cairo University

بسم الله الرحمن الرحيم

"قالوا سبحانك لا علم لنا إلا ماعلمتنا إنك أنت العليم الحكيم"

صدق الله العظيم

سورة البقره (32)

ACKNOWLEDGEMENT

First of all , I must thank *Allah* who granted me the ability to perform this study.

I am most grateful to **Prof. Galal Beheri**, Professor of Oral and Maxillofacial Surgery, Faculty of Oral and Dental Medicine, Cairo University, for his tremendous support that was given to me during the preparation of the study and for his patience and guidance. Without his valuable advice, the quality of this thesis would be severely compromised.

My sincere gratitude is equally extended **Prof. Mostafa Makhlouf**, Professor of Anesthesiology , Faculty of Oral and Dental Medicine, Cairo University, for his endless guidance and his unlimited help. My great appreciation for his academic advice and continuous encouragement during my study.

This study would have never been accomplished without the help and assistance of **Dr. Nadia Galal**, lecturer of Oral and Maxillofacial Surgery, Faculty of Oral and Dental Medicine, Cairo University. I would like to express sincere thanks to her.

Finally, I convey my special gratitude to **Prof. Amin Hindi**, Chairman and Professor of oral and maxillofacial surgery, Faculty of Oral and Dental Medicine Cairo University for his support and to all the members of the Oral and Maxillofacial Surgery Department, for their valuable contribution and support during the study.

Dedication

To my great parents who provided overwhelming support throughout my life

To my wonderful wife

To my son

To the rest of my family

TABLE OF CONTENTS

List of Figures	VI
List of Tables	VIII
List of Abbreviations	X
Abstract	XII
Introduction	
Review of Literature	
-Anxiety and hemodynamic changes	
-Sedation	
-Midazolam.	
.Midazolam Pharmacokinetics	
.Midazolam Pharmacodynamic	
.Midazolam Clinical Uses	14
- α ₋₂ Adrenergic receptors	18
-α- ₂ Adrenergic receptor Agonists	
- Dexmedetomidine	20
. Dexmedetomidine Pharmacokinetic	21
.Dexmedetomidine Pharmacodynamics	22
.Dexmedetomidine Clinical Uses	35
Aim of the Study	39
Patients and Methods	40
-Study Sample	40
-Study Design	41
-Sedation Protocol	42
- Operative Phase	43
-Measurments	45
Results	54
Demographic, Dose and Miscellaneous Data	54
Data of Sedation Efficiency Assessment	61
Data of Analgesia Assessment	66

Data of Anterograde Amnesia Assessment	70
Cardiorespiratory Data	71
Discussion.	70
Summary and Conclusion	
References	92
Arabic Summary	105

LIST OF FIGURES

Figure 1	Chemical structure of midazolam	10
Figure 2	Chemical structure of dexmedetomidine	20
Figure 3	Physiology of alpha 2 adrenoreceptors	22
Figure 4	Dexmedetomidine (Precedex ^R)	51
Figure5	Midazolam(Dormicum R)	51
Figure 6	Cannula placement	51
Figure 7	Pulse oximeter (Rossmax ^R , Taiwan)	51
Figure 8	Blood pressure monitoring device (microlife ^R)	51
Figure 9	Orthopantogram (OPG)	52
Figure 10	Impacted lower third molar removal	52
Figure 11	Dental Implant placement	53
Figure 12	Oral excisional biopsy	53
Figure 13	Mandibular intrabony cyst enucleation	53
Figure 14	Maxillary intrabony cyst enucleation with bone graft	53
Figure 15	Alveoplasty	53
Figure 16	Mean age values in the two groups	54
Figure 17	Gender distribution in the two groups	55
Figure 18	Physical status in the two groups	56
Figure 19	Mean weight values in the two groups	57
Figure 20	Types of oral surgery procedures in the two groups	59
Figure 21	Mean duration of procedure in the two groups	60
Figure 22	Mean Ramsay Sedation Scores in the two groups	61
Figure 23	Mean recovery time in the two groups	62
Figure 24	Mean chief dental surgeon's satisfaction scores	64
Figure 25	Patients' preferred technique for future surgery	65
Figure 26	Mean Pain scores in the two groups	66
Figure 27	Patients' relaxation during surgery in the two groups	67

Figure 28	Mean patients' satisfaction scores in the two groups68
Figure 29	Mean number of consumed analgesic tablets69
Figure 30	Prevalence of Amnesia in the two groups70
Figure 31	Changes by time in mean SBP of the two groups71
Figure 32	Mean % changes in SBP in the two groups72
Figure 33	Changes by time in mean DBP of the two groups
Figure 34	Mean % changes in DBP in the two groups74
Figure 35	Changes by time in mean HR of the two groups75
Figure 36	Mean % changes in HR in the two groups76
Figure 37	Changes by time in mean O ₂ saturation of the two groups77
Figure 38	Changes by time in mean RR of the two groups

LIST OF TABLES

Table (1): ASA Classification.	40
Table (2): Ramsay Sedation Score	.49
Table(3): Mini Mental State Examination	49
Table (4): Numerical Rating Scale	.50
Table (5): recording of Cardiorespiratory Parameters	50
Table (6): comparison between age values in the two groups	54
Table (7): comparison between gender distribution in the two groups	55
Table (8): comparison between physical status in the two groups	56
Table (9): comparison between weight values in the two groups	.57
Table (10): comparison between loading dose in the two groups	58
Table (11): comparison between types of oral surgery procedures	59
Table (12): comparison between duration of procedure in the two groups	60
Table (13): comparison between Ramsay sedation scale scores	61
Table (14): comparison between recovery time in the two groups	62
Table (15): comparison between MMSE in group I	63
Table (16): comparison between MMSE in group I	63
Table (17): comparison between chief dental surgeon's satisfaction scores	64
Table (18): comparison between patients' preferred technique	65
Table (19): comparison between Satisfaction score in the two groups	66
Table (20): comparison between patients' relaxation during surgery	.67
Table (21): comparison between patients' satisfaction scores	.68
Table (22) comparison of consumed analgesic tablets in the two groups	69
Table (23): comparison between amnesia distribution in the two groups	70
Table (24) comparison between % changes in SBP in the two groups	.72

Table (25): comparison between % changes in DBP in the two groups	.74
Table (26) comparison between % changes in HR in the two groups	.76
Table (27) comparison between % changes in O ₂ saturation	77
Table (28) comparison between % changes in RR in the two groups	.78

List of Abbreviations

α Alpha

β Beta

μg or mcg Microgram

ADA American Dental Association

ADR Adverse Drug Reactions

ASA American Society of Anesthesiologists

B P Blood pressure

cAMP Cyclic adenosine monophosphate

CBCT Cone Beam Computed Tomography

CMS Content Management System

CNS Central Nervous System

COPT Chronic Obstructive Pulmonary Disease

C T Computed Tomography

DBP Diastolic Blood Pressure

DMET Dexmedetomidine

ECG Electrocardiogram

FDA Food & Drug Administration

FIO2 Fraction of Inspired Oxygen

GA General Anesthesia

GABA Gamma Amino Butyric Acid

H R Heart Rate

hr hour

ICU Intensive Care Unit

IM Intramuscularly

IV Intravenous

JCAHO Joint Commission on Accreditation of Healthcare Organizations

kg kilogram

LA Local Anesthesia
LC Locus Coeruleus

MAC Monitoring Anesthesia Care

mcg *or* μg microgram
mg milligram
min minute

MMSE Mini-Mental State Examination
MRI Magnetic Resonance Imaging

NE Norepinephrine

NRS Numerical Rating Scale

OMFS Oral &Maxillofacial Surgery

OPG Orthopantogram

PaCO2 Partial Pressure of Carbon Dioxide in the Blood

PaO2 Partial Pressure of Oxygen in the Blood.

PCS Patient Controlled Sedation

RR Respiratory Rate

RSS Ramsay Sedation Score SBP Systolic Blood Pressure

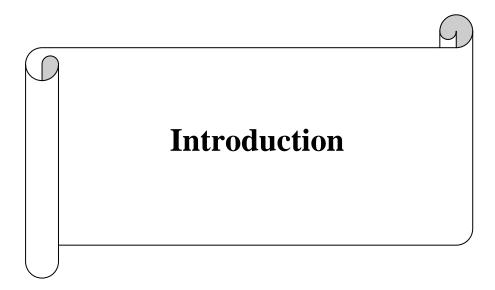
sec second

SNS Sympathetic Nervous System

 $t_{1/2}$ Half-life

Vd Volume of distribution

Abstract


<u>Purpose</u>: The aim of this study was to compare between dexmedetomidine and midazolam for intravenous conscious sedation in minor oral surgery.

Patients and Methods: Twenty healthy patients scheduled to undergo a minor oral surgery were included in this study. Either dexmedetomidine (group I) (1 μg. kg⁻¹) or midazolam (group II) (0.1 mg · kg⁻¹) was administered intravenously until the Ramsay Sedation Score (RSS) reached four or the maximum dose limit was achieved. Recovery time was established when RSS reached 2. Numerical Rating Scale was used for assessment of pain of local anesthesia injection, postoperative pain and patient satisfaction. Analgesic consumption for 24 hours postoperatively was recorded. Amnesia was evaluated by the patients' ability to recall the pictures shown after sedation onset. Cardiorespiratory data were collected for evaluating drug safety.

Results: Sedation was achieved by median doses of 69.3 μg or 1 μg/kg dexmedetomidine and 6.3mg or 0.1 mg/kg midazolam. A significantly higher number of patients showed pain reactions in midazolam group. Very weak amnesia was observed in dexmedetomidine group. The heart rate and blood pressure measurements were significantly lower in dexmedetomidine group. There was no significant difference in the respiratory findings.

<u>Conclusion</u>: Dexmedetomidine is a reliable alternative to midazolam for intravenous sedation. It has additional analysesic effect and provides adequate sedation level without serious side effects during minor oral surgery.

Keywords: minor oral surgery, sedation, dexmedetomidine, midazolam.

