Polyunsaturated fatty acids and Psychiatric disorders

Essay

Submitted for Partial Fulfillment of Master Degree in Neurology & Psychiatry

Presented by:

Ahmed Mohamed Sabry Thabet

M.B.B.Ch

Under the Supervision of:

Prof. TAREK AHMED OKASHA

Professor of Neurology& Psychiatry
Faculty of Medicine
Ain Shams University

Prof. AFAF MOHAMED ABDELSAMEI

Professor of Neurology& Psychiatry Faculty of Medicine Ain Shams University

Dr. MAHMOUD MAMDOUH ELHABIBY

Lecturer of Neurology& Psychiatry
Faculty of Medicine
Ain Shams University

Faculty of Medicine
Ain Shams University
2012

الأحماض الدهنية المتعددة غير المشبعة والإضطرابات النفسية

رسالة

توطئة للحصول على درجة الماجستير في أمراض المخ والأعصاب والطب النفسي

مقدمة من الطبيب/ أحمد محمد صبرى ثابت بكالوريوس الطب و الجراحة

تحت إشراف

الأستاذ الدكتور/ طارق أحمد عكاشه

أستاذ أمراض المخ والأعصاب والطب النفسى كلية الطب جامعة عين شمس

الأستاذ الدكتور/ عفاف محمد عبدالسميع

أستاذ أمراض المخ والأعصاب والطب النفسى كلية الطب جامعة عين شمس

الدكتور/ محمود ممدوح الحبيبي

مدرس أمراض المخ والأعصاب والطب النفسى كلية الطب جامعة عين شمس كلية الطب كلية الطب جامعة عين شمس جامعة عين شمس

f irst and before all I thank God. I thank him for his great mercy, generous blesses, and for his continuous gifts. I thank him for giving me the ability to achieve this work.

I would like to thank **Prof. Tarek Ahmed Okasha** Professor of Neurology & psychiatry, Faculty of medicine, Ain Shams University, who is always pushing me to accomplish thing I never thought I could do. He gave me much of his time, experience, meticulous constructive advice and support. His fatherhood attitude, patience, encouragement were indispensable for completion of this work.

I am very grateful to **Prof. Afaf Mohamed Abdelsamei** Professor of Neurology & psychiatry, Faculty of medicine, Ain Shams University, for her kind supervision, support, indispensable suggestion and great help through out the course of this study. She had the idea of this study and I owe her choosing me to do it, no words would fulfill the feelings I have towards her support.

Words can never express my sincere thank to **Dr. Mahmoud**Mamdouh Elhabiby Lecturer of Neurology & psychiatry, Faculty of medicine, Ain Shams University, for his continuous encouragement, enthusiastic support indispensable suggestion and great help through out the course of this study.

Ahmed Mohamed Sabry Thabet

List of Contents

Subjects Pag	ge
• List of Content	I
• List of Abbreviations	IV
• List of Tables	VII
• List of Figures	VIII
• Introduction	1
• Rationale, Hypothesis, Aim & Methodology	4
Chapter (I): Chemistry of Polyunsaturated fatty	acids
(PUFAs)	6
• Introduction	6
• Synthesis of polyunsaturated fatty acids (PUFAs)	8
• Metabolism of polyunsaturated Fatty acids (PUFAs)	10
• Dietary sources & absorption of polyunsaturated fatty	acids
(PUFAs)	15
• Dietary recommended doses of PUFAs	19
• Common side effects	21
• Polyunsaturated fatty acids (PUFAs) in relation to Bra	in &
Nervous system	21
Chapter (II): Polyunsaturated fatty acids (PUFAs	(a)
Schizophrenia	31
• Possible mechanisms for links between PUFAs abnorma	lities
and Schizophrenia	32
I-Membrane phospholipid composition (MPC) hypothesis .	32
II-PUFAs & Dopamine system	
III- Drug action	43

😂 List of Contents 🗷

• Clinical trials using PUFAs supplements in treatment of
Schizophrenia
Chapter (III): Polyunsaturated fatty acids (PUFAs) &
Mood disorders (MD)60
1-Major Depression Disorder (MDD) 60
• Possible mechanisms for links between PUFAs and Major
Depression Disorder (MDD) 61
I-Effects of ώ-3 FAs on neurotransmitters & Cell
membrane 61
II- Effects of ώ-3 FAs on Brain-derived neurotrophic
factor (BDNF) 63
III-Effects of ώ-3 FAs on cytokines &inflammatory
activity 64
• Studies on the relationship between PUFAs and Major
Depression Disorder (MDD)66
• Clinical trials using PUFAs supplements in treatment of
Major depression 70
2-Postpartum Depression (PPD) 77
3-Bipolar Affective Disorder79
• Proposed mechanisms of actions of omega-3 fatty acids as
mood stabilizer80
• Clinical trials using PUFAs supplements in treatment of
Bipolar Affective Disorder 82
Chapter (IV): Polyunsaturated fatty acids & Anxiety
Disorders 87
• Comorbidity with major depression and anxiety disorders 87

😂 List of Contents 🗷

• The evid	lence o	f the re	elationsh	ip b	etwe	en P	UFAs	and	anxiety
disorde	rs								89
• Clinical	trials	using	PUFAs	in	the	trea	tment	of	anxiety
disorde	rs								91
Chapter	(V):	Polyu	ınsatura	ted	fa	tty	acids	5 ,	Autistic
Disorders	& AD	HD						•••••	95
Role of PU	FAs in	the no	rmal de	velo	pmeı	nt of	the bra	ain	95
1-Autistic	Disord	ers							98
• The relat	tionship	p betwe	een PUF	As a	nd A	utist	cic disc	orde	rs 98
• Clinical	trials	with	PUFAs	sup	plen	nenta	tions	in	Autistic
disorde	rs								100
2-Attention	n-defic	it hype	ractivity	disc	order	(AD	HD)		103
• The relat	tionshij	p betwe	een PUF	As a	nd A	\DHI	D	•••••	106
• Clinical	trials w	ith PU	FAs sup	plen	nenta	ations	s in A	DHI	D 107
Chapter (VI): P	Polyun	saturate	d fa	atty	acid	s & A	Alz h	ieimer's
Disease (A	.D)							•••••	115
• The evid	ence o	f the re	lationsh	ip be	etwee	en PU	J FAs a	and	AD 119
• Clinical	trials w	ith PU	FAs sup	plen	nenta	ations	s in Al	D	128
• Discussion	on								132
• Summar	y								144
• Recomm	endation	ons							103
• Reference	es								158
• Arabic S	ummai	ry							

🕏 List of Abbreviations 🗷

List of Abbreviations

P	2
AA	Arachidonic acid
AD	Alzheimer Disease
ADHD	Attention-deficit hyperactivity disorder
ALA	Alphalinolenic acid
Apo-D	Apo lipoprotein D
APP	Amyloid precursor protein
Αβ	Amyloid β
BDNF	Brain-derived neurotrophic factor
BPRS	Brief psychiatric rating score
CARS	Childhood Autism Rating Scales
CHQ	Child Health Questionnaire
COX	Cyclooxygenase
cPLA2	Cytosolic phospholipase A2
CPRS	Comprehensive psychiatric rating scale
CRS-P, T	Conners' parent and teacher rating scales
CSF	Cerebrospinal fluid
DAG	Diacylglycerol
DCD	Developmental Coordination Disorder
DGLA	Dihomogammalinolenic acid
DHA	Docosahexaenoic acid, 22:6 ώ-3
DPA	Docosapentaenoic acid
DSM	Diagnostic and Statistical Manual for Mental Disorders
DTI	Diffusion tensor imaging
EE	Ethyl eicosapentaenoate
E-EPA	Ethyl eicosapentaenoic acid
Efamol	Evening primrose oil
EFAs	Essential fatty acids
EFSA	European Food Safety Authority

🕏 List of Abbreviations 🗷

EPA	Figogapontagnoja gaid
	Eicosapentaenoic acid
EPUFAs	Essential polyunsaturated fatty acids
FAs	Fatty acids
FATP	Fatty acid transport protein
GLA	Gammalinolenic acid
GRAS	Generally Regarded as Safe
HDL	High-density lipoprotein
HDL	High-density Lipoprotein
HETE	Hydroxyeicosatetraenoic acid
HPETE	Hydroperoxyeicosatetraenoic
HUFAs	Highly Unsaturated Fatty Acids
IP3	Inositotriphosphate
iPLA2	Independent phospholipase A2
LA	Linoleic acid, 18:2 ώ-6
LDL	Low-density lipoprotein
LOX	Lipoxygenase
LPL	Lipoprotein lipase
LT	Leukotrienes
LTP	Long-term potentiation
MDD	Major depressive disorder
MPC	Membrane phospholipid composition
N	Number of human subjects in study
NPD1	Neuroprotection D1
PANSS	Positive and Negative Syndrome Scale
PC	Phosphatidylcholine
PE	Phosphatidylethanolamine
PET	Positron emission tomography
PG	Prostaglandins
PI	Phosphatidylinositol
PI3-K	Phosphatidylinositol-3kinase

🕏 List of Abbreviations 🗷

PIP2	Phosphatidylinositol biphosphate
PIP3	Phosphatidylinositol (3, 4, 5) Trisphosphate
PLA2	Phospholipase A2
PPARs	Peroxisome proliferator-activated receptors
PPD	Postpartum depression
Ps	Phosphatidylserine
PTSD	Post-traumatic stress disorder
PUFAs	Polyunsaturated fatty acids
RAR	Retinoic acid receptors
RBCs	Red blood cells
RCT	Randomized Controlled Trial
RXR	Retinoid X Receptors
SAD	Seasonal Affective Disorder
SANS	Scale Assessment of Negative symptoms
SAPS	Scale for the assessment of positive symptoms
SDQ	Strengths and Difficulties Questionnaire
sPLA2	Secretory phospholipase A2
TAG	Triacylglycerols
TD	Tardive dyskinesia
TX	Thromboxanes
VLDL	Very low-density lipoprotein
ώ	Omega
5-HIAA	5-hydroxyindoleacetic acid
5-HIAA	5-hydroxyindoleacetic acid
5-HT	5-hydroxytryptamine

🕏 List of tables 🗷

List of Tables

Table No.	Title	Page			
Table (1)	Dietary sources of selected EFAs/PUFAs.				
Table (2)	Safe and effective doses of omega-3 fatty acid supplements.	20			
Table (3)	The ω -3 fatty acid/dopamine hypothesis in schizophrenia.	42			
Table (4)	Effects of decrease (increase) in ώ -3 fatty acids ingestion on the dopamine system.	42			
Table (5)	The effects of ώ-3 and ώ-6 polyunsaturated fatty acid supplementation on mental health status.	56			
Table (6)	A review of a series of treatment studies.	70			
Table (7)	Proposed mechanisms of action of omega- 3 fatty acids as mood stabilizers.				
Table (8)	Neuroprotective effects of DHA.	119			

List of Figures

Fig. No.	Title	Page
Fig. (1)	Eicosapentaenic acid.	7
Fig. (2)	Docosahexaenoic acid.	7
Fig. (3)	Arachidonic acid.	7
Fig. (4)	Linoleic acid &ά-Linolenic acid.	7
Fig. (5)	Biosynthetic pathways for the formation	8
	of PUFAs.	
Fig. (6)	Dietary fatty acids as precursors for	10
	eicosanoid synthesis.	
Fig. (7)	Regulation of brain PUFAs uptake.	28
Fig. (8)	Standardized mean differences in	111
	ADHD-related symptoms in omega-	
	3 PUFA-treated compared to placebo-	
	treated subjects.	
Fig. (9)	Hypotheses to explain the neurobiology	117
	of AD.	

Introduction

The human brain is primarily composed of lipids (60–70%) dry weight) comprised of a ratio of saturated fatty acids and unsaturated fatty acid (monounsaturated fatty acid and polyunsaturated fatty acids) (McNamara and Carlson, 2006).

Polyunsaturated fatty acids are important components of membrane cells and neurological tissue, Polyunsaturated fatty acids especially arachidonic acid and docosahexaenoic acid are particularly important for the central nervous system structure and function (Sethom et al., 2010).

Several biological mechanisms potentially explain the impact of omega- 3 Eiscosapentanoic acid in psychiatric disorders; these include **(1)** increased serotonergic neurotransmission, (2) alteration in dopaminergic function, (3) regulation of corticotrophin-releasing factor, (4) inhibition of protein kinase c, (5) suppression of phosphatidylinositol associated second messenger activity, (6) improved cerebral blood flow, (7) regulation of gene expression, (8) increased dendritic arborization and formation, (9) prevention of neuronal apoptosis, (10) competition of eiscosapentanoic acid with arachidonic acid for enzymatic action and resultant reduction of the inflammation response (Freeman et al., 2006).

There is evidence to suggest that abnormal phospholipid and related fatty acid metabolism may play a role in the aetiology of several psychiatric illnesses. including bipolar mood disorder, schizophrenia, major depression, dementia and attention deficit hyperactivity disorder (Parker et al., 2006).

There is evidence that altered composition of membrane levels of fatty acids is correlated with severity of psychotic symptoms and also with impairment of distinct cognitive parameters in subjects with schizophrenia (Sumiyoshi et al., *2010*).

Deficiencies in ω-3 polyunsaturated fatty acids have been reported in a wide range of psychiatric disorders that have included (but are not limited to) depression, suicidal tendencies and aggressive disorders (Young and Conquer, 2005).

The "arachidonic acid cascade hypothesis" asserts that these agents commonly alleviate bipolar disorders symptoms, particularly bipolar mania, by downregulating brain arachidonic acid metabolism (Rao et al., 2008).

Several natural compounds, including omega-3 fatty acids, have been suggested as potential augmenters of antidepressant drug effects especially in treatment-resistant depression (Liano et al., 2010).

Also, decreased levels of the docosahexaenoic essential fatty acid have also been reported in autism (Taylor and Benjamin, 2004).

In patients with social phobia, the abundance of eicosapentaenoic acid and docosahexaenoic acid in erythrocyte membranes is decreased in those with the illness and the extent of the reduction is correlated with the severity of the illness (Green et al., 2006).

Besides, it has been recently reported the first clinical trial demonstrating omega-3 to be effective monotherapy in childhood depression (Nemets et al., 2006).

However, randomized controlled clinical trials have been slow to accrue. Most but not all trials with omega-3 indicate that these fatty acids are effective as an adjunctive treatment for unipolar depression and may be beneficial in other mood disorders (Owen et al., 2008).

There is no doubt that further research is needed in this field to clarify the efficacy of omega-3 as monotherapy for the treatment of unipolar, bipolar, perinatal and childhood depression as well as the optimal dose and type of omega-3 supplement for each case (Venna et al., 2009).

Rationale of the work

As over the past 10 years, numerous studies have investigated the role of polyunsaturated fatty acids in psychiatric disorders (pathogenesis, prevention and significant role in the management) on evidence that polyunsaturated fatty acids play roles in brain structure and function.

Therefore, this work seeks to throw light on polyunsaturated fatty acids and its relation to psychiatric disorders in different aspects and to increase awareness about the benefits of omega-3 fatty acids among psychiatrists as well as patients, which in turn may greatly improve the treatment outcomes in patients with these psychiatric disorders.

Hypothesis

Polyunsaturated fatty acids have a valuable correlation to the pathogenesis and for the management of variable psychiatric disorders.

Aim of the work

To highlight the role of polyunsaturated fatty acids in the pathogenesis, prevention and management of psychiatric disorders.