Statement

This dissertation is submitted to Ain Shams University

for the degree of Master of Science in Computer

Engineering.

The work included in this thesis was carried out by the

author at the Computer and Systems Engineering

Department, Faculty of Engineering, Ain Shams

University.

No part of this thesis has been submitted for a degree

or qualification at other university or institution.

Name:

Taraggy Mohiy Ghanim

Signature:

Date:

1

Ain shams University- Faculty of Engineering Electrical Engineering- Computer and Systems Department

APPROVAL SHEET

Name: Ta	araggy Mo	ohiy	Ghanem			
Thesis: A	Automatic	Coir	Classific	ation	l	
Degree:	Master	of	Science	in	Electrical	Engineering
(Compute	er & Syste	ems)				
		Exa	miners C	omn	<u>nittee</u>	
Name, Ti	itle and A	ffilia	ation			
Sig	gnature					
Prof. Dr.	Said El-S	Saye	d El-Khaı	my		
Professor	in the Co	mpu	ter and Sy	stem	s Engineerii	ng Dept.
Faculty of	f Enginee	ring				
Alexandr	ia Univers	sity				
Prof. Dr.	Hussein	Isma	ail Shahei	n		
Professor	in the Co	mpu	ter and Sy	stem	s Engineerii	ng Dept.
Faculty of	f Enginee	ring				
Ain Sham	ns Univers	sity				
Prof. Dr.	Hazem N	Mahi	moud Abl	oas		
Professor	in the Co	mpu	ter and Sy	stem	s Engineerii	ng Dept.
Faculty of	f Enginee	ring				
Ain Sham	ns Univers	sity			Date:	/ /2012

ABSTACT

Automatic Coin Classification Taraggy Mohiy Ghanim Ibrahim Wahba

Master of Science in Electrical Engineering
(Computer & Systems Engineering)
Ain Shams University, 2012

We present an automatic coin classifier. It is a multi-stage system that depends mainly on visual features. Our multistage system starts out by segmentation of coins using circular Hough Transform, followed by features extraction phase through two complementary cues, and finally classification phase by two different classification techniques, the first is simple nearest neighbor measure and the second is a neural network. Our feature extraction process relies on rotation invariant edge orientation followed by a multi-resolution image processing technique; i.e. Gabor wavelet convolution. We related the wavelet kernel to some mean of texture measurement that depends on entropy computing to relate the kernel size with density of textures in our circular coins. Testing on the publicly available portion of a benchmark European coins database, we can correctly classify 93.5% and 98% of the coins using single face and double faces images respectively. We also show that our correct classification rate can reach 99.8% when adding the coin thickness measurement (which is available for this database). We also tested the system on our own database of Arabic coins, the system correctly classify 92% of the coins using single face images and a simple nearest neighbor measure in the classification phase. Using the Hamming Competitive neural network in the classification phase on the Arabic database improves the system performance to 95.8%.

ACKNOWLEDGEMENT

I want to thank Allah for everything and for his support in completing this thesis that I hope it can be a satisfactory contribution in image processing field.

I also want to thank my teachers, Prof. Hussein Shahein and dr. Mohamed Nabil for their support and benefiting me from their deep knowledge in the computer engineering field.

And I want to thank my great parents and my dear husband for all what they did and for encouraging me to complete my postgraduate studies.

Table Of Contents:

Statement	i
Abstract	iii
Acknowledgement	v
Table of Contents	vi
List of Tables	ix
List of Figures	X
Chapter 1: Introduction	1
1.1 Introduction	1
1.2 Problem Discussion	2
1.3 Approach	3
1.4 Thesis Organization	4
Chapter 2: Literature Survey	6
2.1 Overview	6
2.2 Rotational Invariant Features derived from Edge	9
Information	
2.3 Vector Quantization and Histogram Modeling	18
2.4 Eigen Space Approach	24
2.5 Collinear Gradient Vectors	25
2.6 Polar Gradient Orientations and Partial Occluded	30
Coins	
Chapter 3: Building Recognition Systems	34
3-1 Segmentation Phase	36
3-1-1 Thresholding	37
3-1-1-1 fixed threshold	38
3-1-1-2 Histogram-derived thresholds	38
3-1-1-3 Iterative algorithm	39

3-1-1-4 Background-symmetry algorithm	39
3-1-1-5 Triangle algorithm	41
3-1-2 Edge Finding	42
3-1-2-1 Gradient-based procedure	42
3-1-2-2 Zero-crossing based procedure	43
3-1-2-3 PLUS-based procedure	46
3-2 Feature Extraction Phase	51
3-2-1 Shape Features	51
3-2-2 Textures [20][22]	54
3-2-3 Histogram Features	56
3-2-4 Color Features	57
3-3 Classification Phase	58
3-3-1: Pixel based Classification	59
3-3-2: Object based Classification	59
Chapter 4: Proposed System	60
4.1 Overview	60
4.2 Segmentation Phase	63
4.3 Feature Extraction Phase	68
4.3.1 Phase I	70
4.3.2 Phase II	78
4.3.2.1 Gabor Kernels	78
4.3.2.2 Texture measurement	83
4.3.2.3 Relation between Texture measurement and kernel	84
size	
4.4 Classification Phase	86
Chapter 5: Benchmark Datasets	97

5.1 European Database	98
5-1-1Original coin images	98
5-1-2 Partially occluded coin images	99
5.2 Arabic Database	99
5-2-1 Original coin images	101
5-2-2 Partially occluded coin images	103
Chapter 6: Experiments and Test Samples	105
6-1 First Feature Extraction Method invariant to	105
illumination 94	
6-2 Relation between the length of nearest neighbor set	106
and success rate	
6-3 Relation between the Gabor Kernel and the	108
Information Measure	
6-4 Results of Coin Recognition	109
6-5 Test Cases	116
6.5.1 Wrong classification due to noise	116
6.5.2 Wrong classification due to similarity in texture	117
6.5.3 Wrong classification due to inaccurate segmentation	118
6-6 Tolerance towards occlusions	119
6-7 Sample Codes and Complexity	121
Chapter 7: Conclusions and Future work	132
References	135

List Of Tables:

2-1: Related work	8
2-2: Results of System I [1]	16
2-3: Another Results of System I	18
5-1: Arabic database	100
6-1: Results of proposed system on Arabic database (I)	111
6-1: Results of proposed system on Arabic database (I, II)	113
6-3: Comparative results on different database	115

List Of Figures	
2-1: Polar Coordinate representation of edge image	12
2-2: Function table	14
2-3: Vector Quantization	22
2-4: Segmented Coins	27
2-5: Occluded Coins	30
2-6: Detection of occlusions	31
2-7: Illustration of gradient magnitude and orientation	32
3.1: Steps of recognition process	35
3-2: Thresholding triangle algorithm	41
3-3: Edge finding Sobel Gradient	43
3-4: Edge finding on zero crossing	44
3-5: LOG filter	46
3-6: Thresholding Steps	48
4-1: Main Steps of the system	60
4-2: Scenario Of the System	62
4-3: Block Diagram of Segmentation Phase	66
4-4: Steps Of Hough transform	67
4-5: Block Diagram of Feature Extraction phase	70
4-6: Conversion from Cartesian to polar	71
4-7-a: Rectangular Map	72
4-7-b: Edge Information	72
4-7-c: Radial Derivative	72
4-7-d: Tangential Derivative	72
4-8: Applying Coin rotation by shifting rectangular map	73
4-9:Applying different edge detectors	74

4-10: Feature Extraction details			
4-11-a: Magnitude of Gabor wavelets in 5 different scales			
4-11-b: Gabor Wavelets at different scales and	80		
orientations			
4-12: Gabor function	81		
4-13: 3 D Example on Gabor Kernel	83		
4-14: Block diagram of classification phase	88		
4-15: Block diagram of Hamming Neural network	92		
5-1: Our Database	98		
5-2-1: European coins	98		
5-2-2: European occluded coins	99		
5-3: Arabic Ancient coins	101		
5-4: Arabic Commemorative coins	102		
5-5: Arabic Modern coins	103		
5-6: Occluded Arabic coins	104		
6-1:Invariance to illumination	105		
6-2: Accumulative formed output of ranking procedure	107		
6-3-1: relation between kernel size and success rate	108		
6-3-2: Relation between texture measurement and dense of	109		
textures			
6-4: wrong classification cases	116		
6-5: occlusion percentage versus success rate	119		
6-6: classified occluded coins	120		
6-7: Segmented Coin	121		
6-8: Rectangular Map			
6-9: Test image after applying Gabor wavelets			
6-10: vectored gabored reference image	129		

Chapter 1: Introduction

1.1 Introduction

The domain of coin classification has an important role in many fields nowadays. It is important in charity organizations, cultural heritage domain and financial institutions. It is used in sorting heterogeneous coin collections (modern and historical) automatically, and for building automatic cash machines and currency counters, and for saving our authentic Arabic currencies associated with historical events. In order to automate monetary transactions, it is necessary to enable computers to perform such recognition as well. Many systems were built over the last years serving this field, depending on visual features in addition to other sensor measurements like radius, thickness and weight. Since 2006, a competition is organized annually, with a prize sponsored by the Muscle Network of Excellence to find the best automated coin classification algorithm to deal with large volumes of mixed coin collections. The training and test images for the competition are from the Coin Images Seibersdorf (CIS) database[7]. This database was created as a result of the changeover from twelve European currencies to the Euro, when large volumes of mixed coin

collections collected by charitable organizations had to be returned properly sorted to the national banks of the originating countries. In Austria alone, which is a medium sized country (by European standards) with a population of 8 million [1], the charitable donations amounted to several hundred tons of cash. The large volume of coins rules out any attempt to separate the money manually and calls for an automatic processing device.

1.2 Problem Discussion

Existing coin sorting machines usually work with only one currency at the time, but for nowadays applications two to three thousand different coin faces have to be recognized. Many systems were built over the last years serving this field, but most of the systems depend on visual features in addition to other sensor measurements like radius, thickness, etc., and all the previous systems were tested on western coins either European or American. The problem is that we need a system that works effectively in case there is lack of sensor measurements, a recognition system that depends basically on visual features; also we found that none of the systems were tested on any Arabic database. We propose a new approach serving this field. Our approach depends

basically on visual features, trying to achieve the same goal. Our goal was the recognition of large set of coins with high success rate without the supply of any sensors measurement. For the first time we collect a large set of Arabic coins. Our Arabic database is a combination of recently used ones and some of the ancient and rare historical ones. We configured the first electronic Arabic database and tested our system on it

1.3 Approach

Our proposed system is composed of three main phases; segmentation phase followed by the feature extraction phase and passing finally through the classification phase. We tested the system on two different databases; one is the publically available part of the European database [7], and the second is our Arabic database. We present an automatic coin classifier mainly depending on visual features. It is a multistage system that starts out by segmentation using circular Hough Transform, features extraction by two complementary cues and finally classification phase. We implemented more than one classification algorithm, finding that the most effective one based on applying a defined voting function in the first phase and finally building a hamming

competitive neural network in the second feature extraction phase. Our features extraction process relies on rotation invariant edge orientation followed by Gabor wavelet convolution. We related the wavelet kernel to some mean of texture measurement. Testing on the publicly available portion of a benchmark European coins database, we can correctly classify 93.5% and 98% of the coins using single face and double faces images respectively. We also show that our correct classification rate can reach 99.8% when adding the sensor measurement of coin thickness (which is available for this database). We also tested the system on our own database of Arabic coins, the system correctly classify 95.8% of the coins using single face images.

1.4 Thesis Organization

In chapter one there is an introduction to the thesis and our problem definition, and then there is an overview over our proposed approach, and how the thesis is organized.

Chapter two summarizes our literature survey; this chapter starts with an overview over the previous work, and then a description of all the previous coin classification systems.