

PEROXISOMES AND THEIR RECEPTORS IN DERMATOLOGY

Essay

Submitted for partial fulfillment of Master Degree in Dermatology, Venereology and Andrology

By

Ghada Mohamed Elkatory

M.B.,B.Ch. Faculty of Medicine – Ain Shams University

Supervised by PROF. DR. HANAN MOHAMED EL KAHKY

Professor of Dermatology, Venereology and Andrology Faculty of Medicine - Ain Shams University

DR. HEBA MAHMOUD EL-SAYED DIAB

Lecturer of Dermatology, Venereology and Andrology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2011

تأثير البيروجزيزومز ومستقبلاتها في الجلد

تمهيداً للحصول علي درجة الماجستير في الأمراض الجلدية والتناسلية

طبيبة/ غادة محمد القطوري بكالوريوس الطب و – جامعة عين شمس

تحت إشراف

أ.د/ حنان محمد الكحكى

الأمراض الجلدية والتناسلية ً كلية الطب- جامعة عين شمس

د./ هبة محمود السيد دياب

الأمراض الجلدية والتناسلية كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شم ٢٠١١

SUMMARY

Peroxisomes are intra cellular, spherical, small, membrane-enclosed organelles, that are 0.2 - $1.7\mu m$ and bound by a single membrane. They contain enzymes involved in a variety of metabolic reactions including several aspects of energy metabolism.

The main function of peroxisomes is the breakdown of the very long chain fatty acid through beta oxidation. They play an important role in the cell metabolism of lipids, hormones and regulation of cell proliferation and differentiation which in turn modulate inflammatory responses. Peroxisomal receptors are nuclear hormone receptors that present as three isotypes PPAR, PPAR /, PPAR . On their activation or inhibition by either natural or synthetic agonist and antagonist they exert their action in inflammatory skin disorders; ie acne vulgaris since activators of PPARs in particular of the subset might have beneficial effects on acne vulgaris by inhibiting the release of lipids in the context of sebocyte apoptosis, In atopic dermatitis PPARs might exert a beneficial role through the combination of it's properties immune responses and epidermal differentiation and regulation of epidermal protein and lipid production. In contact dermatitis the anti-inflammatory properties of PPAR agonists, coupled with

Acknowledgment

I wish to express my deep gratitude and appreciation to **Professor Dr. Hanan Mohamed El Kahky** professor of Dermatology, Venereology and Andrology, Faculty of medicine, Ain Shams University, who gave me the honor of working under her meticulous supervision.

I am sincerely grateful to **Dr. Heba Mahmoud El-Sayed Diab**Assistant professor of Dermatology, Venereology and Andrology,
Faculty of medicine, Ain Shams University, for her kind help and
constructive suggestions to achieve this work.

I would like to thank all members of the department of Dermatology and Venereology, Ain Shams University for their support and cooperation.

Finally, I am truly grateful to my family for helping and supporting me all through the period of the research.

Ghada Mohamed Elkatory

CONTENTS

Page
List of Abbreviationsiii
List of Figuresv
List of Tablesvi
Introduction & Aim of the essay 1
Chapter 1: Peroxisomes
• Definition4
• Evolution
• Structure and ultrastructure
• Genes
• Peroxisomal biogenesis
• Functions 14
• Cellular functions and physiology
• Peroxisome Proliferator-activated Receptors
• Tissue distribution of PPARs 18
• Peroxisomal disorders26
• Peroxisome biogenesis disorders
• Zellweger spectrum
• Rhizomelic chondrodysplasia punctata
• Disorder due to single-enzyme deficiencies with intact peroxisomal structure29

Chapter 2: PPARs in dermatology30
• PPARs and their relevance in humman skin physiology 30
• PPARs Expression in Skin30
• Effect on epidermal differentiation, epidermal proliferation and cell death
• Role in permeability barrier function
• Role in lipid metabolism in the epidermis38
• Stratum cornium formation
• Role in skin homeostasis41
• Role in wound healing42
• Relevance of peroxisome proliferator- activated receptor targeting in skin disorders
• Role of PPAR activation in inflammatory skin disorder .45
• Psoriasis
Psoriasis
• Acne Vulgaris46
• Acne Vulgaris
 Acne Vulgaris

LIST OF ABBREVIATIONS

ABCA12 ATP-binding cassette, sub-family A (ABC1), member 12

AD Atopic dermatitis **AK** Actinic keratosis

AMP Adenosine monophosphate
BADGE Bisphenol A diglycidyl
BCFA Branched chain fatty acids

CD4+ T cells T helper cells
CD8+ Cytotoxic T cell

CNS Central nervous system
CSF Cerebro spinal fluid
DC Dendritic cells

DHAP-AT Dihydroxyacetone-phosphate acyl-transferase

DNA DeoxyriboNucleic Acid Endoplasmic reticulum

FAAR Fatty acid activated receptorFABP Fatty acid binding proteinGMP Guanosine monophosphate

HMG-coA 3-hydroxy-3-methylglutaryl-coenzyme A

HODE Hydroxy octadecadienoic acid

IgE Immunoglobulin E

IRD Infantile refsum's diseaseLDL Low density lipoproteins

LT Leukotriene

NALD Neonatal adrenoleukodystrophy

NR1C1 Nuclear receptor subfamily 1 Group C member 1
 NR1C2 Nuclear receptor subfamily 1 Group C member 2
 NR1C3 Nuclear receptor subfamily 1 Group C member 3

NUC 1 Nuclease abnormal -1

PBDs Peroxisomes biogenesis disorders

PEX Peroxin genes PG Prostaglandin

PPARs Peroxisome proliferator activated receptors **PPREs** Peroxisome proliferator responsive elements

PTS Peroxisomal targeting signal

RCDP1 Rhizomelic chondro dysplasia punctata type 1

RNA Ribonucleic acid

RXR 9 cis retinoic acid receptor

SC Stratum corneum

SCC Squamous cell carcinoma

SULT2B1b Cholesterol sulfotransferase type 2B isoform 1b

T3 Triiodothyronine
TCF3 Transcription factor 3

TH T helper cells

TNF Tumor necrosis factor

TPA <u>Tissue plasminogen activator</u>

TZDs Thiazolidinediones UVB Ultra violet band

VLCFA Very long chain fatty acid

ZS Zellweger spectrum

ZSD Zellweger syndrome spectrum

LIST OF FIGURES

Fig.	Page
no.	no.
1	Diagrammatic representation of the animal cell organelles5
2	Fluorescence digital light microscope Image of an African water mongoose skin fibroblast cell
3	Diagramatic representation of the basic structure of peroxisome
4	Diagrammatic representation of the anatomy of the peroxisome
5	Diagrammatic representation of the formation of new peroxisome by division
6	Diagrammatic representation of the role of peroxisome in metabolic processes inside the cell
7	Diagramatic representation of PPAR , / , protein19
8	Diagramatic representation of the formation of the permeability barrier

LIST OF TABLES

Table					Page
no.					no.
1	Peroxisome	Proliferator-activated	Receptor	(PPAR)	
	Subtypes and Corresponding Ligands				25
2	Effects of PPARs activation on the epidermis				32

INTRODUCTION

Peroxisomes are intra cellular small, membrane-enclosed organelles that contain enzymes involved in a variety of metabolic reactions including several aspects of energy metabolism. (*Sertznig et al.*, 2008)

Peroxisomes play an important role in regulating cellular proliferation and differentiation as well as metabolism of lipids, hormones, modulation of inflammatory responses, they also affect cellular membranes and adipocyte formation thus play an important role in aging, they contain oxidative enzymes such as catalase, Damino acid oxidase and uric acid oxidase. Their membrane mainly consists of phosphatidylcholine and phosphatidylethanolamine and largely resembles that of the endoplasmic reticulum (ER). (Sato et al., 2010)

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily and are expressed in a variety of tissues including skin and cells of the immune system. (*Friedmann et al.*, 2008)

These receptors include 4 types: PPAR , PPAR / and PPAR , they are fatty acid activated transcription factors that are best known as transcriptional regulators of lipid and glucose metabolism, evidence has also accumulated for their importance

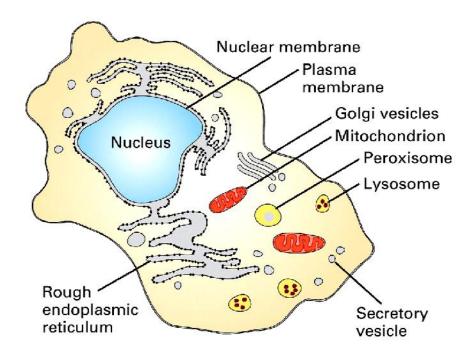
in skin homeostasis. The three PPAR isotypes are expressed human skin. (Michalik and Wahli 2007).

Peroxisomes proliferators activated receptors and corresponding ligands have been shown in skin and other organs to regulate important cellular functions including cell proliferation and differentiation as well as inflammatory responses. These new functions identify PPARs and corresponding ligands as potential targets for the treatment of various skin diseases, other disorders and in skin repair after an injury. (*Sertznig et al.*, 2008).

AIM OF THE ESSAY

The aim of this essay is to discuss the physiology of Peroxisome proliferator activated receptors and their relation to dermatology in health and disease effusing on their possible role as targets for novel therapies. Chapter 1 Peroxisomes

PEROXISOMES


Definition:

Peroxisomes are intracellular organelles with important roles defined in many metabolic processes (fig. 1 and 2). derive their name from their ability to produce H₂O₂ through a group of oxidizing enzymes which use molecular oxygen to transform their substrates releasing H₂O₂ and OH which is toxic through it's oxidative stress resulting in stimulation phospholipase releasing phosphatidic acid enzyme and diacylglycerol that affect adenyl cyclase and protein kinase c respectively causing modulation of a wide array of target proteins including plasma membrane receptors, contractile proteins and regulatory enzymes affecting cellular oxidation, respiration, lipid synthesis, metabolism and transport, sex steroid metabolism, regulation of adipose cell numbers, microsomal oxidation and ketogenesis, insulin sensitivity as well as metabolism of a wide range of xenobiotics which is a chemical found in an organism not normally produced or expected to be present in it. (Wanders and Waterham 2006)

It can also cover substances which are present in much higher concentrations than are usual. Specifically drugs such as antibiotics are xenobiotics in humans because the human body Chapter 1 Peroxisomes

does not produce them itself nor are they part of a normal diet. (Vatsyayan et al., 2005)

Catalase, the enzyme which breaks down hydrogen peroxide is the necessary identifying marker of the peroxisomes and by definition a peroxisome must contain it. (*Gabaldón 2010*)

Fig. (1): Diagrammatic representation of the animal cell organelles (*http://.slideshare.com*)