Role of Duplex Ultrasonography in Evaluation of Complications of Transplanted Kidney

Essay

Submitted for Partial Fulfillment of M.Sc. Degree in Radiodiagnosis

By

Ahmed Ateya Ateya Farag M.B. B.CH. Tanta University

Under Supervision of

Dr. Hatem Mohammed Al Azizi

Assistant professor of Radiodiagnosis Faculty of Medicine – Cairo University

Dr. Abo Al Magd Mohammed Al Bohi

Lecturer of Radiodiagnosis
Faculty of Medicine – Cairo University

Dr. Hussein Saeed Al Fishawy

Lecturer of internal medicine & nephrology Faculty of Medicine – Cairo University

Faculty of Medicine Cairo University 2012

Acknowledgement

First and fare most, I feel always indebted to Allah, the most kind and the most merciful.

I would like to express my deepest gratitude to

Dr. **Hatem Mohammed Al Azizi**; Assistant professor of radio diagnosis, faculty of medicine, Cairo university, to whom I owe very much, for planning and supervising this work, for his constructive criticism, and for his close valuable guidance all through this work. I will never be able to express my feeling toward him with simple words, and I wish to be able one day to return to him a part of what he had offered to me.

I would also like to express my great thanks and gratitude to

Dr. Abo Al Magd Mohammed Al Bohi Lecturer of radiodiagnosis, Faculty of Medicine - Cairo university, for his generous help and continuous encouragement. He provided me with valuable comments, knowledge, experience and hand necessary for achieving this work.

I am greatly honored to express my deep respect and gratitude to Dr. Hussein Saeed Al Fishawy Lecturer of internal medicine & nephrology, Faculty of Medicine - Cairo University, for his faithful supervision, help and encouragement in initiating and completing this work.

Lastly but not least, I would like to thank my wife and my family whose continuous encouragement and support have made this work easier to accomplish.

Key word

Transitional cell carcinoma

Duplex Ultrasonography

Angiotensin converting enzyme

Abstract

numerous and varied include parenchymal insultsi.e. vascular Complications are occlusion, obstruction, hemorrhage, urinary leak, collections, infection and useful in its dual role of notonly monitoring toxicity. Ultrasound is dysfunction but transplant also assessing response to therapy. Doppler sonography has been widely used inmonitoring renal allograft over the non invasiveness convenience and past decade because of its real time nature. Doppler sonography represents a useful diagnostic tool for complications of renal transplant detecting vascular such as AV fistulas and stenosis or thrombosis of renal vessels.

List of Contents

		Page No.
•	Introduction and aim of the work	1
•	Anatomy	5
•	Pathology of transplanted kidney complications	26
•	Technique of duplex ultrasonography of transplanted kidney.	52
•	Manifestations of renal graft complications	74
•	Summary and conclusion	116
•	References	119
	Arabic summary	

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	The pelvis and calyces of the kidney	6
Fig. (2):	Coronal diagram for renal Parenchyma	7
Fig. (3):	A diagram to show the lymph vessels and nod of the abdomen	
Fig. (4):	Fascial planes of retroperitoneum	9
Fig. (5):	Anterior relations of the kidney	11
Fig. (6):	Posterior relations of the kidney	12
Fig. (7):	Renal vascular anatomy	14
Fig. (8):	Normal sonographic anatomy of right kidney	18
Fig. (9):	Sagittal scan of left kidney showing length a AP dimension	
Fig. (10):	Coronal scan of right kidney in prone positi showing the length and anteroposter dimension	ior
Fig. (11):	Drawing illustrating a normal transplant kidney w vascular and ureteric anastomoses	
Fig. (12):	Sagittal scan of a normal renal transplant	23

List of Figures (Cont...) Fig.

Fig. No.	Title Page No)_
Fig. (13):	Normal color and spectral Doppler scan of the transplant kidney	
Fig. (14):	Normal Doppler spectrum of intrarenal arteries 65	
Fig. (15):	B-mode images of acute rejected transplant kidney	
Fig. (16):	Normal RI of transplant kidney76	
Fig. (17):	Acute tubular necrosis of transplant kidney77	
Fig. (18):	Serial Doppler of renal graft undergoing acute rejection	
Fig. (19):	Duplex Sonography of renal artery thrombus 80	
Fig. (20):	Color Doppler of renal transplant infarct82	
Fig. (21):	B mode & color Doppler of renal infarct83	
Fig. (22):	Power Doppler for renal transplant infarct84	
Fig. (23):	Doppler of transplant renal vein thrombosis85	
Fig. (24):	B mode of renal transplant hydronephrosis 87	

Fig. (25):	Duplex sonography of renal transplant hydronephrosis
	nydronephrosis87
Fig. (26):	B mode of peritransplant hematoma88
Fig. (27):	B mode of peritransplant transplant hematoma 89
Fig. (28):	B mode of peritransplant urinoma90
Fig. (29):	B mode of peritransplant urinoma90
Fig. (30):	B mode of subcapsular hematoma91
Fig. (31):	Triplex of hydronephrosis secondary to lymphocele
Fig. (32):	B mode of lymphocele drained by pig tail catheter
Fig. (33):	B mode of peritransplant abscess93
Fig. (34):	Fungal infection of renal transplant95
Fig. (35):	B mode of cystitis95
Fig. (36):	Various manifestations of renal transplant infection
Fig. (37):	Color & power Doppler of transplant kidney artery
Fig. (38):	Triplex of recipient's iliac artery99
Fig. (39):	Triplex of transplant renal artery stenosis 101

Fig. (40):	Triplex of interlober arteries in transplant renal
	artery stenosis
Fig. (41):	Post biopsy intrarenal arteriovenous fistula 105
Fig. (42):	Arteriovenous fistula in chronic rejection 106
Fig. (43):	Triplex of renal transplant pseudoaneurysm 108
Fig. (44):	Power Doppler in chronic rejection 109
Fig. (45):	Power Doppler showing blood flow ratio 110
Fig. (46):	Color Doppler of transitional cell carcinoma 112
Fig. (47):	Color Doppler of intracystic renal cell carcinoma 112
Fig. (48):	B mode of renal transplant stone 113
Fig. (49:	B mode of posttransplant lymphoproliferative disease
Fig. (50):	Color Doppler of Pelvic Lymphoma115

List of Tables

Tab. No.	Title	Page No.
Table (1): Normal re	nal measurements	18
Table (2): Indices us	ed in the assessment of rei	nal blood flow66

List of Diagrams

Diag. No.	litie	Page No.
Diagram (1):	Parameters and formulas for the des	scription
	of Doppler waveforms	69

List of Abbreviations

Abbrev. Mean

ACE Angiotensin converting enzyme
AR Acute rejection
AT Acceleration time
ATN Acute tubular necrosis
AVF Arteriovenous fistula
BFAR Blood flow area ratio
BKV Polyoma BK virus
CAN Chronic allograft nephropathy
CR Chronic rejection
EBV Epstein Barr virus
HCB Hypertrophied column of Bertin
IgA Immunoglobulin A
PDPower Doppler
PIPulsatility index
PRF Pulse repetition frequency
PSV Peak systolic velocity

PTLD Post-transplantation lymphoproliferative disorder

RI..... Resistance index

SD Standard deviation

TAMX Time average mean velocity

TCC..... Transitional cell carcinoma

Tx Transplantation

US Ultrasound

UB Urinary bladder

VCU Voiding cysto-urethrography

VUR Vesico-ureteric reflux

Introduction

Continued improvements in graft survival have led to widespread acceptance of renal transplantation as the preferred treatment for the majority of patients with endstage renal disease. The long-term care of these patients is often provided away from transplantation centers (*Akbar et al., 2005*).

Renal transplantation has established itself as the treatment of choice for the majority of patients with end-stage renal failure. Compared to dialysis it is more cost-effective, produces better survival and allows a more normal lifestyle (*Kabala, 2003*).

The increasing number of renal transplantations and the increased survival rate of renal transplantation patients lead to an increase of the number of complications [vascular, urological, collections] (Nikolovski et al., 2004).

An understanding of renal transplant anatomy and the risks of post-transplantation immunosuppressive therapy is essential. In addition, familiarity with the indications and limitations of surgical techniques as well as

Introduction & Aim of Work

collaboration between the radiologist and the transplantation surgeon are vital for maximizing the chances of renal allograft survival. Complications of renal transplantation can be diagnosed and managed with minimally invasive techniques (Kobayashi et al., 2007).

Ultrasound is unequivocally the most valuable noninvasive imaging modality used in monitoring the renal transplant. Renal transplants are routinely evaluated with sonography as either a component of a screening protocol, or as a work up for renal dysfunction based on a rising serum creatinine level or a decreased urine output (Muradali & Wilson, 2005)

Intrarenal CDUS is a noninvasive, accurate diagnostic tool that can be administrated portably and is easily repeatable, thereby making it not only a highly valuable imaging technique but also the method of choice in screening and diagnosing vascular complications of renal transplants (*Gao et al., 2007*)