

Semantic -based Approach for Text Generation

Dalia Sayed Fadl

Computer Science Department,

Faculty of Computer and Information Sciences,

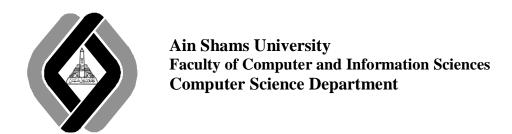
Ain Shams University

Under Supervision of

Prof. Dr. Mustafa Aref

Computer Science Department

Faculty of Computer and Information Sciences


Ain Shams University

Dr.Ibrahim F. Moawad

Information Systems Department

Faculty of Computer and Information Sciences

Ain Shams University

Semantic -based Approach for Text Generation

A thesis submitted to computer science department. Faculty of computer and information sciences, Ain shams University, in partial fulfillment of the requirements for the degree of Master of Computer and Information Sciences.

By

Dalia Sayed Fadl

Approved by the discussion committee:	
Prof. Dr. Ahmed Sharaf Eldin	Member
Professor of Computer and Information Sciences Faculty of Computer and Information Sciences Helwan University	
Prof. Dr. Mohsen Rashwan	Member
Professor of comuncation Engineering Faculty of Engineering Cairo University	
Prof. Dr. Mostafa Mahmoud Aref	Member and Supervisor
Professor of Computer Sciences Department Faculty of Computer and Information Sciences Ain Shams University	
Computer Science Departm	
Faculty of Computer and Information	on Sciences

Ain Shams University

Cairo 2012

انتاج النصوص باستخدام الدلالات اللفظيه

داليا سيد محمد قسم علوم الحاسب كلية الحاسبات و المعلومات جامعة عين شمس

بكالوريوس علوم الحاسب كلية علوم الحاسب و نظم المعلومات 2007

تحت اشراف

الاستاذ الدكتور. مصطفى عارف قسم علوم الحاسب كلية الحاسبات و المعلومات جامعة عين شمس

دكتور/ ابراهيم معوض قسم نظم المعلومات كلية الحاسبات و المعلومات جامعة عين شمس To my parents, husband, sister and brother.

Abstract

Natural Language Processing enables communication between people and computers. Natural language processing (NLP) is a field of computer science, artificial intelligence and linguistics concerned with the interactions between computers and human (natural) languages. Specifically, it is the process of a computer extracting meaningful information from natural language input and/or producing natural language output. Natural language processing is a very attractive method of human-computer interaction. Natural language understanding is sometimes referred to as an AIcomplete problem because it seems to require extensive knowledge about the outside world and the ability to manipulate it. Natural Language Generation (NLG) is sub field of natural language processing which focuses on the generation of written texts in natural language from some underlying semantic representation of information. The objective of natural language generation (NLG) or text generation systems is to produce coherent natural language texts which satisfy a set of one or more communicative goals. To achieve these goals, the generated text should be (among coherent: using well-connected, sensible and comprehensible English; accurate: containing accurate information (or it could lead to the user making false inferences); valid: causing the user to make the desired inferences (for example, telling a naive user that the koala looks like a teddy bear and not telling her that it doesn't behave like one may result in a nasty surprise); understandable: including information which the user can understand; and relevant: including information which is relevant to the current discourse goal and not redundant. In this thesis, a new model to generate an English text from a recent ontology-based semantic representation called (Rich Semantic Graph) is introduced. The developed model can be exploited in Text Summarization, Machine Translation and Information Retrieval applications. Because of generating multiple texts, the phase of text evaluation is developed in our model to evaluate the final multiple texts based on the most frequently used words using WordNet ontology and the relations between sentences. In this model, WordNet ontology is used to generate multiple texts according to the word synonyms. Also, the model enables users to determine the output text style by selecting one of two writing styles (Cause-Effect and Description-Narration). Finally, the model evaluates the generated texts to rank them based on two criteria: most frequently used words and discourse sentence relations.

Acknowledgments

Thanks to **Allah** before and after, and heartily thankful to my supervisors; **Professor Mostafa Aref** for his encouragement guidance and support from the initial to final level, enabled me to develop and understand Natural language Generation. He was not just a supervisor but a father in all the situations. And I would like to show my gratitude to my great supervisor; **Dr Ibrahim Fathy** without his patient guidance and support I would not make this work. I would like to thank my family for all their love and encouragement; My parents who raised me with a love of science and supported me in all my pursuits; My brother Mohamed and my sister Dina. And, this thesis would not have been possible without my loving husband Tarek Khattab, who helped, supported, encouraged and believed in me all the time at all the situations. Thank you is very small word to express my feeling. I am thankful to my friends and my colleges how supported me. I would like to appreciate the help offered by my great colleague Mohamed mamdoh how helped me so much every time I was in need for any help.

Publications

Parts of this thesis are published as original papers in the following references:

- 1. Mostafa Aref, Ibrahim Fathy, Dalia Sayed "Natural language Generation Sentence Planner" International Conference on intelligent computing and information systems ICICIS 2011 p22, Faculty of computer and information science Ain shams University, Cairo, Egypt.
- 2. Dalia Sayed, Mostafa Aref, Ibrahim Fathy "Text Generation Model from Rich Semantic Representations" Egypt Society of Language Engineering ESOLEC' 2011 Pages 68-67, Faculty of engineering Ain shams university, Cairo, Egypt.
- 3. Ibrahim Moawad, Dalia Sayed, Mostafa Aref "Rich Semantic Representation Based Approach for Text Generation" INFOS 2012.

TABLE OF CONTENTS

		Page
AB	STRACT	1
AC	CKNOWLEDGEMENTS	2
TA	BLE OF CONTENTS	3
LIS	ST OF FIGURES	4
LIS	ST OF TABLES	5
LIS	ST OF ABBREVIATIONS	6
СН	IAPTER 1 INTRODUCTION	8
1.1	Overview	9
1.2	Aims and Contributions	11
1.3	Structure of the thesis	11
СН	IAPTER 2 BACKGROUND AND RELATED WORK	13
2.1	Text generating process steps.	14
2.2	Problems in generating NLG systems	16
2.3	Semantic text representation	17
2.4	Ontology	17
	2.4.1 Ontology in text generation	18
	2.4.2 The Relation between Ontologies and Natural Language	18
2.5	Generated text Evaluation.	19
2.6	Text Generation approaches	20

2.6.1 Traditional Generation approaches	20
2.6.2 Ontology based approach.	21
2.7 Related Work	22
CHAPTER 3 DESIGN	26
3.1 NLG Model Conceptual View	27
3.2 THE NLG System Model Overview	28
3.2.1 Text Planning	30
3.2.2 Sentence Planning	30
3.2.3 Surface Realization	33
3.2.4 Writing Styles Selected Essay Generation phase	34
3.2.5 Evaluation.	34
3.3 Case Studies	36
CHAPTER 4 NLG Model Implementation	48
4.1 Output	49
4.2 Analysis	64
CHAPTER 5 Conclusion and Future Work	66
5.1 Conclusion	67
5.2 Contributions	67
5.2 Future Work	68

LIST OF ABRIVIATIONS

Abbreviation		Page
W	Weight	30
E	Existence of Synonyms in rich semantic graph	30
NR	Synonym WordNet Rank	30
TR	Total Values of All Synonym Ranks	30
NGS	WordNet Group By Similarity for Synonyms	30
TG	Total Number of Groups by Similarity for all Synonyms	30
DS	Discourse Relations.	35
WNR	WordNet Rank	35
OWL	Ontology Web language	31
RDF	Resource Description Framework	31
RSG	Rich Semantic Graph	35

LIST OF TABLES

Table		Page
4.1	Case 1Outputs.	50
4.2	Case 2 Outputs	52
4.3	Case 3 Outputs	54
4.4	Case 4 Outputs.	56
4.5	Case 5 Outputs	58
5.6	Case 6 Outputs.	60
4.7	Case 7 Outputs.	62
4.8	NLG Model Outputs	64

LIST OF FIGURES

Figure		Page
3.1	NLG Model Conceptual View	28
3.2	Natural Language Generation Model	29
3.3	Discourse Structuring Algorithm	31
3.4	Example of Subject Grouping.	31
3.5	Example of Predicate Grouping.	31
3.6	Discourse Structuring Relations Example.	32
3.7	Discourse Structuring Relations Algorithm.	33
3.8	Referring Expression Generation Algorithm.	33
3.9	Evaluation Algorithm.	35
3.10	Model Input (Student Rich Semantic Graph)	36
3.11	Model Output1 (two Description-Narration Styled Paragraphs)	36
3.12	Model Output2 (One Cause-Effect Styled Paragraph)	36
3.13	Lexicalization Output (Sample of Selected Object Synonyms)	37
3.14	Discourse Structuring Output (Pseudo-Sentences Sample)	37
3.15	Aggregation Output (Sample of Semi-Paragraphs)	38
3.16	Referring Expression Output (Enhanced Semi-Paragraphs sample)	38
3.17	Surface Realization Output (Sample of Paragraphs)	39
3.18	Model Input (Family Rich Semantic Graph)	39
3.19	Model Output1 (two Description-Narration Styled Paragraphs)	40
3.20	Model Output2 (One Cause-Effect Style Paragraph)	40
3.21	Lexicalization Output (Sample of Selected Object Synonyms)	40

3.22	Discourse Structuring Output (Pseudo-Sentences Sample)	41
3.23	Aggregation Output (Sample of Semi-Paragraphs)	41
3.24	Referring Expression Output (Enhanced Semi-Paragraphs sample)	42
3.25	Surface Realization Output (Sample of Paragraphs)	42
3.26	Model Input (Travel Rich Semantic Graph)	43
3.27	Model Output1 (two Description-Narration Styled Paragraphs)	43
3.28	Model Output2 (One Cause-Effect Style Paragraph)	43
3.29	Lexicalization Output (Sample of Selected Object Synonyms)	44
3.30	Discourse Structuring Output (Pseudo-Sentences Sample)	44
3.31	Aggregation Output (Sample of Semi-Paragraphs)	45
3.32	Referring Expression Output (Enhanced Semi-Paragraphs sample)	45
3.33	Surface Realization Output (Sample of Paragraphs)	46
4.1	Case 1 Input.	49
4.2	Case 1 Output.	49
4.3	Case 1(Generated Sentences)	50
4.4	Case 1 (Generated Paragraphs).	50
4.5	Case 2 Input.	51
4.6	Case 2 Output.	51
4.7	Case 2 (Generated Sentences).	52
4.8	Case 2(Generated Paragraphs).	52
4.9	Case 3 Input.	53
4.10	Case 3 Output.	53
4 11	Case 3(Generated Sentences)	54

4.12	Case 3(Generated Paragraphs)	54
4.13	Case 4 Input.	55
4.14	Case 4 Output.	55
4.15	Case 4 (Generated Sentences).	56
4.16	Case 4 (Generated Paragraphs).	56
4.17	Case 5 Input.	57
4.18	Case 5 Output.	57
4.19	Case 5(Generated Sentences)	58
4.20	Case 5(Generated Paragraphs)	58
4.21	Case 6 Input.	59
4.22	Case 6 Output.	59
4.23	Case 6 (Generated Sentences).	60
4.24	Case 6 (Generated Paragraphs)	60
4.25	Case 7 Input.	61
4.26	Case 7 Output.	61
4.27	Case 7(Generated Sentences).	62
4.28	Case 7(Generated Paragraphs).	62
4.29	Cases from 1 to 4.	64
4.30	Cases from 5 to 7	64

1

Introduction

CHAPTER OUTLINE

- Overview
- Aims and Contributions
- Structure of the thesis