Short Term Outcome of Conventional Open Lumbar Discectomy: Analysis of Prognostic Factors Affecting the Early Clinical Outcome

Chesis

Submitted For Partial Fulfillment of the Master Degree in **Neurosurgery**

By

Abd Allah Mouhammed Maher

M.B., B.Ch. Faculty Of Medicine-Ain Shams University

Under Supervision of

Prof. Dr./ Emad Mohammad Ghanem

Professor of Neurosurgery Faculty of Medicine – Ain Shams University

Dr./ Hazem Ahmed Mostafa

Assistant Professor of Neurosurgery Faculty of Medicine – Ain Shams University

Dr./Sherif Hashem Mourad

Lecturer of Neurosurgery
Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2012

Acknowledgement

To **Allah**, goes all my deepest gratitude and thanks for achieving any work in my life.

I would like to express my sincere thanks and deepest gratitude to **Prof. Dr. Emad Mohammd Ghanem**, Professor of Neurosurgery, Ain Shams University, for his gracious supervision, valuable guidance, generous help, support and continous encouragement through the whole research. Iam deeply affected by his noble character, perfection, care and consideration. I am very much privileged and honored to have him as my supervisor.

Also, my sincere thanks to **Dr.Hazem Ahmed Mostafa**, Assistant Professor of Neurosurgery, Ain Shams University for his unique effort, considerable help, assistance and knowledge he offered me through out the performance of this work.

I am deeply grateful to **Dr. Sherif Hashem Mourad**, lecturer of Neurosurgery, Ain Shams University, for his most valuable advises and support all through the whole work and for dedicating much of his time to accomplish this work.

Last but not least, I would like to express my deep est appreciation to all my colleagues in the Neurosurgery Department of Ain Shams University, my patients and to every one help me in this work.

Abd Allah Maher

List of Contents

Subjects	Page No.
List of Tables	i
List of Figures	iii
Introduction	1
Aim of the Work	4
Review of Literature	
History	5
Development of the Lumbar Spi	ne 6
Anatomy of Lumbar Spine	8
Biomechanics of Lumbar Spine	20
Pathology of Disc Herniation	26
Clinical Presentation and Clinic	cal Examination41
Diagnostic Studies	56
Different Modalities in Treatme Lumbar Disc	
Patients and Methods	82
Results	93
Discussion	117
Summary and Conclusion	130
References	133

List of Abbreviations

BMI Body Mass Index

CSF Cerebro-Spinal Fluid

CT Computed Tomography

EMG Electromyograpny

LBP Low Back Pain

LDH Lumbar Disc Herniation

MRI Magnetic Resonance Imaging

NSAIDs Non Steroidal Anti-Nflammatory Drugs

ODI Oswestry Disability Index

RP Radicular Pain

SD Standard Deviation

SLRT Straight Leg Raising Test

TNF Tumor Necrosis Factor Alpha

VAS Visual Analogue Score

List of Tables

Cable No	o. Eitle	Page No.
Table (1):	The symptoms and signs in L2-S2 radic syndrome	
Table (2):	Classification of Disc Degeneration	87
Table (3):	Classification of Disc Herniation	88
Table (4):	Sex distribution	93
Table (5):	Age distribution among males and fema	ales94
Table (6):	Age groups of the studied patients	94
Table (7):	Occupation among studied patients	95
Table (8):	Education level among the patients in study	
Table (9):	BMI among males and females of studied patients	
Table (10):	Duration of preoperative low back pain radicular pain.	
Table (11):	Findings of clinical examination among the studied patients 100	ong
Table (12):	Radiological findings among students	
Table (13):	Changes of clinical parameters	105

Table (14):	Analysis of prognostic factors for Oswestry disability index at final follow-up	07
Table (15):	Correlation of prognostic factors with final Oswestry disability score	109
Table (16):	Analysis of prognostic factors for low back pain score at final follow-up	110
Table (17):	Correlation of prognostic factors with low back pain score at final follow-up	12
Table (18):	Analysis of prognostic factors for radicular pain score at final follow-up	13
Table (19):	Correlation of prognostic factors with radicular pain score at final follow-up	116

List of Figures

Figure No.	Citle	Page No.
Figure (1):	Anatomy of lumbar vertebra	9
Figure (2):	Vertebral canal morphology of L3, 4 respectively	
Figure (3):	The intervertebral foramen	11
Figure (4): Rad	licular canal; different parts and boundari	es 13
Figure (5):	The sinuvertebral nerve	15
Figure (6):	The intervertebral disc	17
Figure (7):	Spinal ligaments	18
Figure (8):	Vertebral body architecture and l transfer	
Figure (9):	Load transfer in normal and degeneradiscs.	
Figure (10):	(A): Various types of disc degeneration they appear in disco-gram, (B): Degree disc degeneration	s of
Figure (11):	a-d: a) Disc bulge, b) Disc protrus (located extraforaminal), c) Disc extrus (located intraforaminal) and Sequestration (located within the sp canal)	sion d) vinal
Figure (12):	Sites of disc herniation	32
Figure (13):	Side of scoliosis according to side of herniation:	
Figure (14):	Dermatomes of the lower extremities	49
Figure (15):	Straight leg raising test	50
Figure (16):	Reinforced SLRT	52

Figure (17):	Femoral stretch test	. 53
Figure (18):	FABER test	54
Figure (19):	Lateral radiograph of lumbar spine	. 56
Figure (20):	Axial (left) and sagittal (right) CT images of degenerative lumbar spondylosis	. 58
Figure (21):	MRI T2W sagittal (A) and axial (B) images	. 59
Figure (22):	(a) T2W image shows left sided laminotomy and some signal alteration within the epidural space and in the disc (b): After contrast injection there is intense contrast enhancement within the granulation/scar tissue in the epidural space as well as within the disc	. 60
Figure (23 a):	Sagittal T2W images in seated flexion and extension (dynamic MRI) demonstrate posterior L4/L5 disc bulge that increases on extension with inward bulging of ligamentum flavum	. 61
Figure (23b):	Flexion and extension MRI demonstrate early L1/L2 disc degeneration (arrows) with greater sagittal rotational motion	. 61
Figure (23 c):	Sagittal diffusion-weighted image of the lumbar spine. High signal intensity in intervertebral discs with normal height (L1-L2, L2-L3) indicates restricted diffusion characteristic of healthy cartilage	. 61
Figure (23 d):	MR spectroscopy (MRS) can be applied to the study of the spinal cord or intervertebral disc to measure the concentration of some tissue metabolites.	. 62
Figure (24):	Sagittal view discography with normal normal disc at level L4/5 and severe disc degeneration with contrast medium in the spinal canal of L5/S1	. 66

Figure (25):	Myelography antero-posterior view (A), right oblique(B)	
Figure (26):	Visual analogue scale (VAS)	84
Figure (27):	Sex distribution among patients in the study	93
Figure (28):	Pie chart showing occupation distribution among the patients	95
Figure (29):	Pie chart showing education level among patients in the study	96
Figure (30):	Pie chart showing smoking habit among the patients of the study	97
Figure (31):	Pie chart showing history of back trauma among patients in the study	99
Figure (32):	Column chart showing clinical presentation findings in studied patients	100
Figure (33):	Column chart showing percentage of scoliosis and disc space narrowing among patients in the study	101
Figure (34):	Pie chart showing percentage of different levels of disc herniation	101
Figure (35):	Column chart showing type and site of disc herniation	102
Figure (36):	Column chart showing percentage of different types of disc degeneration according to Pfirmann classification	103

Introduction

Disc herniation is one of the most common spinal diseases (Kohlboeck et al., 2004). It was originally described by Mixter &Barr in 1934 who proclaimed that a posterior rupture of the intervertebral disc allowed nuclear material to leak and cause compression of the adjacent spinal nerve root (Mixter and Barr, 1934). The compression of neural structure, as well as a local inflammatory reaction can cause lumbar and leg pain as well as other neurological symptoms (Ahn et al., 2002).

Lumbar open discectomy is the most frequently used method for treating lumbar disc herniation that requires spinal surgery (Kohlboeck et al., 2004). It was first introduced by Mixter and Barr in 1934. Since then, it has been widely used as the basic surgical regimen for the treatment of disc herniation. Discectomy has been performed in recent years by using an endoscope, but conventional open discectomy's effectiveness has been definitely confirmed for the treatment of lumbar disc herniation. Open discectomy has been shown to produce good treatment outcomes in 70-90% of the cases (Lee et al., 2010).

However, the occurrence of residual complaints following lumbar disc surgery ranges from 22% to 45% and 30% to 70% of patients report residual sciatica and residual low back pain, respectively after surgery (*Raymond et al.*, 2005). It

is assumed that preoperatively, accurately determining the indications for surgery is essential for producing good treatment outcomes (*Kohlboeck et al.*, 2004).

Nowadays, concepts of health and health care are changing. Clinical outcome is the major indicator of patient's life quality. If the patient's perception of the disease on his/her life is known, it becomes easier to choose a treatment. The major aim of a treatment is to enhance the quality of life by reducing the unwanted effects of the disease (*Varol and Serpil*, 2005).

Although two patients can have the same sickness, the outcome can be different. Therefore, determining the prognostic factors that affect the surgical outcome would be helpful for predicting the surgical outcome and selecting the optimal treatment modality. Beside that, identifying the prognostic factors that predict the clinical course of residual complaints might be important for further development of effective methods of treatment, especially when these prognostic factors can be modified.

Numerous studies have previously been conducted to examine the factors affecting the surgical treatment outcomes of disc herniation. However, to the best of our knowledge, few studies have been conducted on the treatment outcomes of disc herniation depending on radiological findings using 1.5-T MRI equipment and with assessing the clinical outcomes by having

the patients use a subjective pain score visual analogue scale (VAS) or using the Oswestry disability index (ODI) (*Lee et al.*, 2010).

Given the above background, we will analyze the correlations between the sociodemographic, clinical, radiological prognostic factors and postoperative clinical outcomes of patients who will undergo open discectomy for the lumbar disc herniation.

Aim of the Work

Overall the aim of the study is to evaluate short-term result and different factors influencing the result in patients undergoing surgical treatment for a lumbar disc herniation as follows:

- ➤ Investigating the short-term result after lumbar disc hrniation surgery and possible predictive factors for surgical outcome; such as demographics, social or clinical.
- ➤ Evaluating the relationship between the radiological findings on preoperative MRI and clinical outcome after lumbar discectomy.
- ➤ Studying the influence of preoperative factors on outcome using pain visual analogue scale (VAS) and Oswestry disability index (ODI).

History

Hippocrates (Circa 460-370 BC) was probable the first to mention sciatica and low back pain (*Marketos et al.*, 1999).

Intervertebral disc pathology was first described by *Rudolph Virchow* in 1857. Between 1927 and 1931 *Schmorl*, a german pathologist, established the modern basis for understanding the intervertebral disc (*Castor et al.*, 2005).

The first transdural intervertebral discectomy was reported by *Oppenheim* and *Krause* in 1908 (*Oppenheim and Krause*, 1909).

In 1934, *Mixter* and *Barr* published their milestone paper on the pathology and surgical findings associated with a ruptured nucleus pulposus and established the link between disc prolapse and sciatica (*Mixter and Barr*, 1934).

In 1939, *Love* and *Semmes* developed the classic approach, which consisted of a subtotal laminectomy and retraction of the thecal sac medially to expose and remove the disc herniation instead of being removed by full transdural approach (*Gruber and Boeni*, 2008).

In 1967, Yasargil used the microscope for discectomy (Yasargil, 1977).

Development of the Lumbar Spine

The first axial structures to appear in the embryo are the notochord, the neural tube and the dorsal aorta. The first vertebral column is formed by aggregation of mesenchyme around the notochord. The stages of development of the vertebral column were described as following stages: (A) Blastemal stage (B) Chondrogenous stage (C) Osseogenous stage (Bogduk, 2005).

A. Blastemal stage:

1- Formation of the mesenchymal column

In embryos of 3 weeks gestation a continuous mesenchymal column is formed around the cylindrical notochord which becomes separated from the gut tube and aorta ventrally and from the neural tube dorsally, as mesenchyme appears around it (*Naidich*, 2002).

2- Segmentation

A banded pattern becomes evident in the mesenchymal vertebral column. Light bands, at the level of the intersegmental vessels, alternate regularly with dark bands. The dark bands are the forerunners of the intervertebral discs, including cartilage plates, and are known as the perichordal discs. The light bands are the anlagen of the vertebral bodies (*Bogduk*, 2005).