Using Integrated Management Methodologies for Conservation of Water Resources in Eastern Nile Delta, Egypt

By

Neveen Ramadan Ali Mohamed

B.Sc. in Civil Engineering, Faculty of Engineering, South Valley University, 2003

A Thesis Submitted in Partial Fulfillment
Of
the Requirement for the Master Degree
in
Environmental Engineering

Department of Environmental Engineering
Institute of Environmental Studies and Research
Ain Shams University

Using Integrated Management Methodologies for Conservation of Water Resources in Eastern Nile Delta, Egypt

By

Neveen Ramadan Ali Mohamed

B.Sc. in Civil Engineering, Faculty of Engineering, South Valley University, 2003

This Thesis towards a Master Degree in Environmental Engineering Has Been Approved by:

1. Prof. Dr. Ali Mohamed Talaat

Professor of Irrigation and Hydraulics, Faculty of Engineering, Ain Shams University

2. Prof. Dr. Akram Mohamed El Ganzori

Director, Strategic Research Unit,

National Water Research Center

3. Prof. Dr. Mohamed Mohamed Nour El Din

Head of Hydraulics and Irrigation Dept,

Faculty of Engineering, Ain Shams University

4. Dr. Noha Samir Donia

Associated Prof. Environmental studies and Research Institutes, Head of Engineering Dept., Ain Shams University.

Using Integrated Management Methodologies for Conservation of Water Resources in Eastern Nile Delta, Egypt

By

Neveen Ramadan Ali Mohamed

B.Sc. in Civil Engineering, South Valley University, 2003

A Thesis Submitted in Partial Fulfillment

Of

the Requirement for the Master Degree

in

Environmental Engineering

Department of Environmental Engineering

Under The Supervision of:

1. Prof. Dr. Mohamed Nour El-Din

Head of Hydraulics and Irrigation Dept, Faculty of Engineering, Ain Shams University.

2. Dr. Noha Samire Donia

Associated Prof. Environmental Research Studies Institutes, Ain Shams University.

3. Dr. Hanan Ali Farag

Researcher, Environment and Climate Changes Research Institute, National Water Research
Center.

ACKNOWLEDGEMENT

The author wishes to express his profound feeling of gratitude and indebtedness to his supervisor Prof. Dr. Mohamed NourEl-Dinfor his keen guidance, advice, support and continued encouragement throughout this study, his thought-provoking ideas and suggestions are also gratefully acknowledged.

The author gratefully acknowledges Prof. Dr. Akram Mohamed El Ganzori, Director, Strategic Research Unit, National Water Research Center for his encouragement and support.

Special thanks and appreciations are extended to Dr. NohaSamireDoniafor his valuable advice, comments and encouragement throughout the study.

Special thanks are also due to Dr. Hanan Ali Farag for his essential and valuable guidance in developing the model, without this guidance, it is questionable to be able to achieve the study.

Thanks are extended to every member of the staff of the Research Institutes of the National Water Research Center (NWRC), Egyptian Survey Authority, Al-Sharkia Irrigation Directorates in (MWRI), Egyptian Environmental Affairs Agency (EEAA), their friendly attitude and assistance were always important and helpful.

ABSTRACT

Water is a finite resource that is essential for agriculture, industry, and human existence. Egyptian water resources are quite limited; challenges for achieving the highest possible water use efficiency are particularly difficult. It is important to save and conserve water while providing necessary quantities to satisfy social and economic requirements as well as conserve the environment. However, due to the increase in population and associated rise in the standards of living human economic and social activities, the demands of water are significantly intensifying. The population growth needs more cultivated area for producing extra food and job opportunities. Therefore, there is a growing pressure to achieve better performance from this limited water resource to increase the productivity and saving water to assist in new land reclamation.

the overall objective of this study illustrate how using integrated management methodologies for conservation of water resources and facing challenges of increasing water demand due to the rapid population growth, by best utilizing of the limited water supply. In additions, the current study provides and assesses certain scenarios towards the optimum use of this limited water supply in further land reclamation in east Nile delta. To achieve this objective, data was collected from different source to describe area study and mathematical model was developed as an easy tool to help the decision making to achieve the integrated water resources management. That has been achieved by constructing a comprehensive geographic Information System (GIS) for all water supplies and water demands in the Eastern Delta The study concluded that the proposed IWRMI System as DSS tools are effective and efficient for modeling, monitoring, and estimating the water demands and share the information between different involved partners. That will be helpful in the prediction of the impacts of alternative management policies in plans. Constructing a Geo-database of the different entities of the water resources and its related data is very important in developing the optimum water resources allocation alternatives. Also, it allows generating different scenarios for cropping pattern (based on different objectives and according to the fluctuation in water resource), and optimizing the results by re-allocating crops at the least water consumption locations over the arable land in the eastern Nile delta

TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTION	1
1.1Overview	1
1.2Problem Definition	1
1.3Objectives	2
1.4Methodology	2
1.5Structure of the Thesis.	3
CHAPTER TWO : LITERATURE REVIEW	5
2.1IWRM Approaches and DSS Application	6
2.1.1IWRM Definition	6
2.1.2Decision Support System (DSS) Tools for IWRM	9
CEIving Gorgraphic Indomestion Nystam (GES) in (DRS)	11
CEDNING Model Criterio Asselysis (MCA) to (2800)	13
2.2Water Resources Management Modeling for River Basins	15
2.2.1Simulation Models	16
2.2.2Optimization Models	20
2.2.3Integrated Simulation and Optimization Models	21
2.3Integrated Water Resources Management Modelling for Sub Basins	22
2.3.1Reservoir Operation	22
2.3.2Groundwater Management	23
2.3.3Conjunctive Management of Surface and Groundwater	24
2.3.4Irrigation and Drainage Management	26
2.3.5Runoff Irrigation Modeling	29
CHAPTER THERE: DESCRIPTION OF THE STUDY AREA	30
3.1Geographic Location	30
3.2Population	31
۳.۳Climate	31
3.4Water Resources:	32
3.4.1Surface Water Resources:	33
3.4.2Drainage Water Reuse	35
3.4.3Groundwater Resources	37
3.5Land Use:	39
3.6Case Study (Ismailia Canal Command Area)	40

3.6.1Ismailia Canal	41
3.6.2Bahr El-Baqar Drain	43
3.6.3Drainage Water Reuse	48
CHAPTER FOUR: DEVELOPMENT OF MODELING TOOL	49
4.1 Model Calculation Procedure	50
4.2Calculation of Water Consumption	51
4.2.1Calculate of Municipal and Industrial Water Consumed	51
4.2.2Calculation of Irrigation Water Consumed (WCirr(c))	53
4.2.3Calculation of Water Gap in Command Area:	54
4.2.4Seepage Losses in Ismailia Canal	54
4.3Data Collection	55
4.4Development and Implementation of Geographical Information System	(GIS)57
4.4.1 Data Handling:	58
4.4.2GIS Layers Design and Implementation:	58
4.4.3 Production of Digital Maps	61
4.5Database Structure Design and Implementation	63
4.5.1Purpose of the Database	63
4.5.2Database Requirements	64
4.5.3Design Database	64
4.5.4Database Structure and Table Normalization	64
4.6Development of Graphical User Interface (GUI)	66
CHAPTER FIVE: APPLYING THE DEVELOPED MODELAND ANAL	YSIS OF
RESULTS	68
5.1Assessment of Water Supply:	68
5.1.1Surface Water Resources:	68
5.1.2Groundwater Resources	68
5.1.3Drainage Water Reuse	69
5.2Assessment of Water Quality to Different Water Resources	71
5.2.1Assessment of Water Quality in Ismailia Canal:	71
5.2.2Assessment of Water Quality in Bahr El-Baqar Drain:	72
5.2.3Assessment of Ground Water Quality:	80
5.3Assessment of Water Demand:	82
5.3.1population	82
o.r.YIndustrial Water Demand	83

5.3.3Irrigation Water Consumption	83
5.3.4Horizontal Expansion Projects	83
5.4Estimate of Water Gap in Command Area:	87
5.5Scenarios for Future Water Use	90
5.5.1Designing Different Scenarios:	90
5.5.2Result of the Designed Scenarios	92
CHAPTER SIX:CONCLUSIONS AND RECOMMENDATION	104
REFERENCES	108

LIST OF FIGURES

Figure (1): Methodology Frame Wor	. 3
Figure (2): Stages in IWRM Planning and Implementatio.	. 6
Figure (3): DSS Elements.	9
Figure (4): Location Map of the Study Area	30
Figure (5): Increase Rate of Population	31
Figure (6): Irrigation System and Total Inflow in Study Area	34
Figure (7): Drainage System in Study Area.	35
Figure (8): Location of Reuse Pump Station in East Nile Delta	37
Figure (9): Ground water Depth in East Nile Delta	38
Figure (10): Groundwater Extraction Rate in East Nile Delta	39
Figure (11) show distribution of old and new lands	. 39
Figure (1 ^۲): Ismailia Canal Command Area	40
Figure (13): Ismailia Canal and Branches	41
Figure (14): Irrigation Directorates in Ismailia Command Area	42
Figure (15): Irrigation Districts in Ismailia Command Area.	42
Figure (16): Wastewater Discharged to the Southern Bahr Baqar	44
Figure (17): Geographical Distribution to WQ Monitoring Sites	45
Figure (18): Geographical Location of Drainage Water Reuse P.S.	48
Figure (19): Basic Design of DSS-IWRM	50
Figure (20): Scanning Process of Hardcopy Maps.	58
Figure (21): Ground Control (GCPs) and Corresponding Points	59
Figure (22): Canals and Drains Layers Overlay on the Rectified Maps	60
Figure (23): The Rectified Maps.	60
Figure (24): Part of the Relational Schema for the Designed Data	65
Figure (25): Main Screen of IWRMIS System	66
Figure (26): Main Menu of IWRMIS System.	67
Figure (27): Water Discharge to Each Irrigation Directorate (MCM)	.70
Figure (28): The Geographical Distribution to Extraction Rate from Groundwater	70
Figure (29): Geographical Location of Drainage Water Reuse P.S.	70
Figure (30): Water Supply from Different Sources (MCM) in 2010	71
Figure(31): Results of Analysis (Organic Pollutants) for Drain During 2009/2010	75

Figure (32): Results of Analysis (Heavy Metals) for Drain During 2009/2010	76
Figure(33): Resultsof Analysis (Nutrients) for Drain During 2009/2010	77
Figure(34): Results of Analysis (Salt) for Drain During 2009/2010	78
Figure (35): Chemical Types of Groundwater	80
Figure (36): Developed Map to Geographical Distribution of the Population Density	and
Domestic Water Deman	84
Figure (37): Industrial Water Consumption asnd Calculated future Water Deman (Mo	CM)84
Figure (38): Crop area and Irrigation Water Consumption (MCM) at 2010	85
Figure (39): Horizontal Expansion Projects and Future Water Demand(MCM)	85
Figure (40): Water Consumption and Calculated Future Water Demand Value for Dis	fferent
Uses (MCM) at DirectorateLevel	86
Figure (41): Water Consumption and Calculated Water Demand (MCM)	87
Figure (42): Developed Water Gap Value Map (MCM) in Year 2010	88
Figure (43): Developed Water Gap Value Map (MCM) in Year 2025	90
Figure (44): Results of the Different Alternatives to Scenario (1) at Salhia Directo	94
Figure (45): Results of the Designed Scenarios at SalhiaDirectorate	95
Figure (46): Results of the Different Alternatives to Scenario (1) at Ismailia Directora	ae 98
Figure (47): Results of the Designed Scenarios at Ismailia Directorate	99
Figure (48): Results of the Different Alternatives to Scenario (1) at Ismailia Commar	nd
Area	102
Figure (49): Results of the Designed Scenarios at Ismailia Command Area	103

LIST OF TABLES

Table (1): Climatic Data of the Study Area (monthly averages in 2009)32
Table (2): Present and Future Drainage Water Reuse (MCM)
Table (3): Reclamation projects Area (feddan)
Table (4): Description of WQ Monitoring Sites in Bahr Baqar46
Table (5): Water Quality Variables Measured by NAWQM Network47
Table (6): Distribution of Water Requirement (1/c/d) from 1995 to 203051
Table (7): Irrigation System and Corresponding Field Application Efficiencies53
Table (8): Main Data Categories and Data Sources
Table (9): Summarizes the Analysis Results of WQ Parameters in Ismailia Canal during 2009-
201071
Table (10): Effluent Discharged toBahr El-Baqar Drain
Table (11) Summarizes the Analysis Results of WQ Parameters on Bahr Baqar Drain During
2009/201074
Table (12): Comparison Between Water Supply and Water Consumptionyear 201088
Table (13): Comparison Between Water Supply and Water Consumption in 2025(MCM89
Table (14): Results of the Designed Scenarios at Salhia Directorate
Table (15): Results of the Designed Scenarios at Ismailia Directorate
Table (16): Results of the Designed Scenarios at Ismailia Command Area101

CHAPTER ONE INTRODUCTION

1.1 Overview

There is no doubt that the problem of water shortage may cast a shadow over the Middle East region and forced many countries to re-plan of water resources in a different way. They are considered one of the greatest challenges facing Egypt. That may affect the operations of economic and social development. This is due to the continuous increase in water needs with limited water resources that require concerted efforts of all for the integrated management of water resources, which will meet those challenges. Good water management constitutes a major challenge and calls for integrated and holistic planning.

IWRM is a cross-sectoral policy approach to respond to the growing demands for water in the context of finite supplies. It is an approach that aims to ensure the coordinated development of water, land and related resources to optimize economic and social welfare without compromising the sustainability of environmental systems, (GWP, 2000).

The present study aims at contributing to IWRM process by developing methods to facilitate spatial planning and decision making in water resources management. The development tool is capable of archiving, analyzing, handling the huge amount of data at different scales. That will be able to provide a complete picture of spatial water resources allocation and good analysis platform for better management and planning.

1.2 Problem Definition

Water shortage is one of the greatest challenges facing Egypt that may affect the operations of economic and social development. This is due to continuous increase in water needs (because of rapid growth of population, urbanization, the expansion of the developed projects) with limited water resources. All that put further stress on the existing problems of water scarcity, water pollution, sinking groundwater tables, seawater intrusion... etc. That requires concerted efforts of all, for the integrated management of water resources and that will meet those challenges.

1.3 Objectives

The overall objective of this study is to develop an integrated information system as a tool to support the decision maker to using integrated management methodologies for conservation of water resources.

1.4 Methodology

To achieve the objective of this study the following methodology:

- 1. Review of the previous studies of integrated water resources management for general and in the study area in particular,
- 2. Develop a modeling tool for estimating the water gap between the water supply and water demand for different uses. Themodeling tool three main components are,
 - Databasewas designed for spatial and temporal data.
 - Model baswas developed using a database and GIS as the programming environment. Through the model, the value of the water shortages is calculated, moreover shown this in maps, tablesand queries.
 - User interface, were designed and implemented. Through which the user of the modeling tool can easily handle the data and information and retrieve the results and outputs from the model.
- 3. Collection of data and information about, water supply from different sources, water demand for different activities such as agriculture, domestic, industrial and horizontal expansion projects in the study area to construct and develop an information system for the integrated water management.
- 4. Applying the developed model for:
 - Assess (quantity and quality) water resources in the study area.
 - Assess of water consumption for different uses in the region to the current situation and the future based on the horizontal expansion plan developed by the Ministry of Irrigation and the Ministry of Agriculture for the reclamation of land.
 - \$\foatin \text{ For estimating the water shortages value between the water supply and water demand
 - Developingofthe water gap (MCM/year) maps, represent the spatial distribution of the difference between the water supply and water demand at a medium level (canal command area).
- 5. Analysis of the different developed maps,
- 6. Design and generate various scenarios for different development measures.
- 7. Adoption of IWRM approach for analysis of water management scenarios,

8. Present the results of the study of the maps, which allows decision makers to take a comprehensive vision and visual data and the possibility of review of any alternative proposals based on the spatial location and associated data.

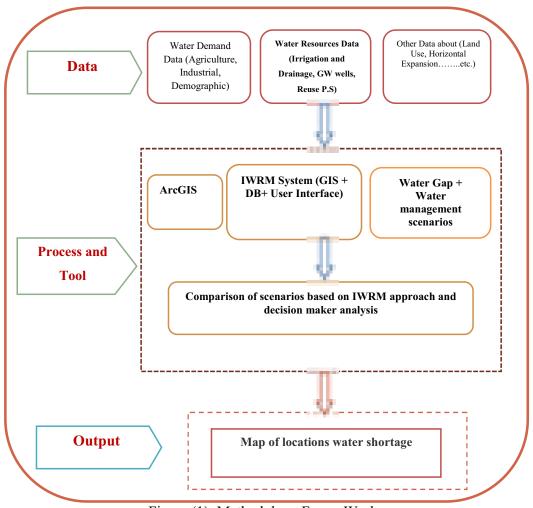


Figure (1): Methodology Frame Work

1.5 Structure of the Thesis

This thesis consists of six chapters, list of references and Arabic summary.

Chapter (1), is an introduce that encompasses an overview, problem definition, significance of the study, study objectives, study methodology and outline of the thesis

Chapter(2), literature review presents an overview of the Literature that deals with the research topic, including the relevant papers, technical reports, and textbooks. It covers

different related IWRM issues, GIS application and DSS In general and the study area particular.

Chapter (3), Description of the Study Area: contains a detailed of the reasons for selecting East Delta for this study and description of this area of determining the geographic location and the climate and water resources of different form, water consumption by for various uses, land use, the proposed horizontal expansion plan in the region.

Chapter (4), Development of Modeling Tool: present a detailed explanation to the developedmathematical model, which was built in this study and the constraints that took into account when built it and what the possibilities of work are, in addition to the data required to apply this model.

Chapter (5), Applying The Developed Model and Analysis of Results: In this chapter, were presented the results of applying the model was developed during the study on the selected area from the east of the Delta (Ismailia Canal Command Area) to manage the distribution of water in the medium level (canal command area) based on an approach to integrated management of water resources. In addition, the estimated water gap between supply and demand of water for different uses in the area that has been selected. Moreover, contains an explanation of different scenarios of management and that have been proposed and the results of applying the model to the scenarios are shown in the maps, tables and graph formats, and the various comments it.

Chapter (6), Conclusions and Recommendation: this chapter exemplifies the conclusions from the study, as well as a summary of the recommendations of the researcher for the current or future studies