Role of Multi-Detector CT Angiography In Assesment of Atherosclerotic Coronary Artery Disease

Thesis

Submitted For Partial Fulfillment of Master Degree

In Radio-Diagnosis

Submitted By

Mustafa Adham Ismael

M. B. Ch. B Baghdad University (1993)

Supervised by

Dr. Hanaa Abdel Kader Abdel Hameed

Prof. of Radio diagnosis
Ain shams University

Dr. Yosra Abdel Zaher Abdullah

Lecturer of Radiodiagnosis

Ain Shams University

Faculty of Medicine Ain Shams University 2012

دور الأشعة المقطعية متعددة المقاطع في تقييم أمراض تصلب الشرايين التاجية

بحث

للحصول على درجة الماجستير في الأشعة التشخيصية

الطبیب /مصطفی ادهم اسماعیل بکالوریوس طب وجراحه کلیة الطب جامعة بغداد (۱۹۹۳)

تحت اشر اف

الاستاذ الدكتور/ هناء عبد القادر عبد الحميد أستاذ الأشعة التشخيصية كلية الطب – جامعة عين شمس الدكتور/ يسرا عبد الظاهر عبد الله مدر س الأشعة التشخيصية كلية الطب – جامعة عين شمس كلية الطب – جامعة عين شمس

كلية الطب

جامعة عين شمس ٢٠١٢

First of all, thanks to **God** for helping me to carry out this work.

I would like to express my deepest feeling of gratitude to **Dr. Hanaa Abdel Kader Abdel Hameed** Prof. of Radiodiagnosis, Ain Shams University. For her valuable instruction, her vast experience and meticulous supervision, her continuous encouragement and support in deed gave me a push to work hard.

All my respect to **Dr. Yosra Abdel Zaher Abdullah**Lecturer of radio diagnosis, Faculty of Medicine, Ain
Shams University; for her effort, supervision and
encouragement.

I dedicate this work to my family who have supported me all over my life and made me who I am now and without them I wouldn't have achieved anything.

سورة البقرة الأية: ٣٢

Contents

Subjects H		Page
List of abbreviation	18	I
• List of figures		III
• List of Tables		X.
• Introduction		1
• Aim of the work		4
• Review of literatur	e	
- Normal Anaton	ny of the Coronary Vessels	5
- Pathology of Co	oronary Artery Disease	17
- Physical Princi	ples and Technical aspects	26
- Role of MDCT	in evaluation of atherosclerot	ic coronary
artery disease		62
• Patients and Metho	ods	86
• Results		94
• Illustrative Cases		101
Discussion		121
Summary and Con	clusion	126
• References		128
• Arabic summary.		

List of Abbreviations

AHA : American heart association

bpm : Beat per minute

CABG: Coronary Artery Bypass Grafts

CAD : Coronary artery disease

CAG : Coronary Angiography

CPR : Curved planar reformation

CT : Computed tomography

CTCA : Computed tomography coronary angiography

DSCT: Dual Source Computed Tomography.

EBCT: Electron Beam Computed Tomography

ECG : Electrocardiogram

HU : Hounsfield Units

IHD : Ischemic heart disease

IMA : Internal mammary Artery

IVUS : Intravascular Ultrasonography

LAD : Left Anterior Descending

LCx : Left Circumflex Artery

LIMA : Left Internal Mammary Artery

LM: Left Main Trunk

MCV : Middle Cardiac Vein

MDCT: Multidetector Computed Tomography

🕏 List of Abbreviations 🗷

MICABG: Minimally Invasive Coronary Artery Bypass

Grafting

MIP : Maximum Intensity Projection

MPR : Multi-planar Reconstruction

MSCT: Multi-slice computed tomography

OM : Obtuse Marginal Artery

PDA : Posterior Descending Artery

RCA: Right Coronary Artery

ROI : Regoin Of Interest

SVG : Saphenous Vein Graft

VR : Volume-Rendered

List of figures

Fig. No	Title	Page
Fig. (1)	Anatomy Coronary arteries A: the sterno-	7
	costal surface of the heart. B: Viewed on	
	the diaphragmatic surface of the heart.	
Fig. (2)	Dominant circulation (A); left dominant	10
	circulation, (B); Co-dominant circulation	
	and (C); Right dominant circulation.	
Fig. (3)	Axial CT anatomy of the coronary arteries	11
	A-origin of LAD.	
	B- origin of The left circumflex artery.	
	C- origin of The RCA.	
Fig. (4)	Curved reformatted MIP images showing	12
	normal anatomy of the coronary arteries.	
Fig. (5)	CT angiography VR images showing	13
	normal coronary anatomy.	
Fig. (6)	VR images anomalous origin and course of	16
	the coronary arteries.	
Fig. (7)	Effect of heart rates on image quality.	30
Fig. (8)	Effect of image reconstruction on vessels	41
	detection.	
Fig. (9)	Normal coronary morphology (A) Axial	43
	CT left main (LM) coronary artery ostium	
	(B) Axial CT image through origin of right	
	coronary artery (RCA. (C) midheart plane	
	reveals middle RCA between RA and right	

Fig. No	Title	Page
	ventricle (RV) and middle LAD coronary	
	artery between RV and left ventricle (LV).	
	(D) View of inferior aspect of heart shows	
	posterior descending artery (PDA).	
Fig. (10)	Maximum intensity projections (a) Right	45
	anterior oblique view shows (LAD) artery	
	(b) Left anterior oblique view in plane	
	connecting (RCA) artery and circumflex	
	coronary artery along the atrioventricular	
	groove shows right coronary artery (c) Left	
	anterior oblique "spider" shows course of	
	(LAD) artery.	
Fig. (11)	Normal coronaries artery anatomy (Curved	46
	multiplanar reconstruction.	
Fig. (12)	Three dimensional VR image showing	47
	normal variant trifurcation anatomy of the	
	left main stem artery.	
Fig. (13)	Dedicated software platform for automated	48
	segmentation of the coronary arterial tree.	
Fig. (14)	Stepladder artifact in the mediastinum.	53
Fig. (15)	Respiration-related artifact in the anterior	54
	chest wall.	
Fig. (16)	Beam hardening effects caused by surgical	55
	clips.	

Fig. No	Title	Page
Fig. (17)	High-attenuating artifacts caused by	56
	coronary arterial calcifications. (a)	
	Volume-rendered image (b) Multiplanar	
	reformatted image.	
Fig. (18)	Artifact from an air bubble in contrast	57
	material.	
Fig. (19)	Effect of delayed scanning on coronary	59
	artery bypass graft.	
Fig. (20)	Coronary calcium. 320-MDCT.	63
Fig. (21)	Coronary calcium scoring - Agatston score.	64
Fig. (22)	Calcium score with 3.0 mm (a) and 0.5 mm	68
	slice reconstructions (b).	
Fig. (23)	Schematic illustrations of coronary artery	70
	stenosis.	
Fig. (24)	Three dimensional reconstruction of the	72
	heart (A). Curved multiplanar	
	reconstructions of the RCA (B), LAD (C)	
	and LCx arteries (D).	
Fig. (25)	Multiple stenoses in the RCA artery (A).	73
	multiple significant lesions using curved	
	multiplanar reconstruction of the RCA	
	artery (B).	
Fig. (26)	Three-vessel disease by 320-row computed	75
	tomography angiography.	

Fig. No	Title	Page
Fig. (27)	normal scan woman with 120 kVp, 420	77
	mAs, and an estimated effective dose of 3.9	
	mSv.	
Fig. (28)	Stent evaluation with Single heart beat 320-	80
	row CTA.	
Fig. (29)	Effect of surgical clips on the diagnostic	82
	evaluation of the arterial bypasses.	
Fig. (30)	Coronary artery bypass grafts (CABGs) by	83
	volume rendering and multiplaner image of	
	saphenous venous graft.	
Fig. (31)	Patient history with CAD.	94
Fig. (32)	Distribution of non acceable segments.	95
Fig. (33)	Distribution of significant lesions	96
Fig. (34)	Show the Results for the CTCA on a "per-	97
	artery" basis.	
Fig. (35)	Percentage of LIMA status.	98
Fig. (36)	Radial graft status.	99
Fig. (37)	Status of venous grafts.	100
Fig. (38)	Case (1): Ectatic LAD with Curved MPR	102
	patent.	
Fig. (39)	Case (1): Curved MPR patent ectatic ramus	102
	intermedius.	
Fig. (40)	Case (1): 3D VR show normal origin of	102
	RCA with ectatic proximal LAD and ramus	
	intermedius.	

Fig. No	Title	Page
Fig. (41)	Case (2): Curved MPR atherosclerotic	104
	LAD with mid segment severe stenosis.	
Fig. (42)	Case (2): Curved MPR atherosclerotic LCX	104
	with sevre stenosis at proximal segment.	
Fig. (43)	Case (2): Curved MPR atherosclerotic	104
	RCA with proximal severe stenosis.	
Fig. (44)	Case (3): Curved MPR proximal mild	106
	stenosis (40%) at LAD (A) 3D VR severe	
	stenosis of RCA at middle segment.	
Fig. (45)	Case (3): Curved MPR of RCA with tight	106
	severe stenosis at middle segment.	
Fig. (46)	Case (4): Curved MPR show patent	108
	deployed stent at proximal second diagonal	
	branch of LCX (A). Curved MPR	
	atherosclerotic LAD (B).	
Fig. (47)	Case (4): Curved MPR show patent stent at	108
	distal RCA with proximal severe stenosis	
	(A). 3D VR show proximal severe	
	stenosisof RCA with patent distal branch	
	(B).	
Fig. (48)	Case (5): 3D VR show Patent LIMA graft	110
	is seen anastomosed to the distal LAD.	
Fig. (49)	Case (5): 3D VR free graft anastomosed	110
	sequentially to the distal RCA as well as	
	PDA branch.	

Fig. No	Title	Page
Fig. (50)	Case (5): Curved MPR Patent LIMA graft	110
	is seen anastomosed to the distal LAD	
	artery.	
Fig. (51)	Case (6): 3DVR patent deployed stent at	112
	middle segment of LAD with anomalous	
	origin of RCA.	
Fig. (52)	Case (6): Curved MPR of LCX show	112
	proximal severe stenosis (85%).	
Fig. (53)	Case (7): Curved MPR subtotal occlusion	114
	of second diagonal branch.	
Fig. (54)	Case (7): Curved MPR diffusely ectatic	114
	RCA.	
Fig. (55)	Case (7): 3D VR show proximal patent	114
	ectatic LAD.	
Fig. (56)	Case (8): Curved MPR subtotal occlusion	116
	at proximal egmentt LAD by mixed plaque.	
Fig. (57)	Case (8): Curved MPR show patent	116
	atherosclerotic OM branch.	
Fig. (58)	Case (8): Curved MPR middle segment	116
	moderate stenosis of RCA by soft plaque	
Fig. (59)	Case (9): 3D VR patent LIMA to distal	118
	LAD.	
Fig. (60)	Case (9): Curved MPR with significant	118
	stenosis at proximal LAD and good site of	
	anastomosis.	

Fig. No	Title	Page
Fig. (61)	Case (10): 3D VR show patent graft to OM.	120
Fig. (62)	Case (10): Curved MPR show totally occluded RCA & good filling of PDA after anastomosis of RCA with venous graft.	120
Fig. (63)	Case (10): CPR distal part of LIMA is seen attenuated.	120
Fig. (64)	Case (10): CPR show good site of anastomosis of free graft with OM.	120

🕏 List of Tables 🗷

List of Tables

Table No.	Title	Page
Table (1)	Technical Specifications of Imaging	32
	Protocols for Contrast-Enhanced Coronary	
	Angiography by MDCT.	
Table (2)	Severity of coronary artery stenosis on CT	70
	angiography.	
Table (3)	Distribution of the patients with	96
	significant lesions according to the	
	number of diseased segments.	