

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERIN IRRIGATION &HYDRAULICS DEPARTMENT

Surface Water Quality Management Case Study: Rosetta Branch-River Nile

A Thesis Submitted in Partial Fulfillment for the Requirements of the PhD Degree of Science in Civil Engineering (Irrigation and Hydraulics)

By

Samia Abou El- Ftouh Mohamed

M.Sc. Civil Engineering -(Irrigation and Hydraulics) Ain Shams University (2007)

Supervised by

Prof. Dr. Ahmed Ali Ali Hassan

Professor of Environmental Hydrology Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University

Prof. Dr. Tarik Abdel-Rahman Tawfic

Director, Central Laboratory for Environmental Quality Monitoring - National Water Research Center Ministry of Water Resources and Irrigation

Dr. Rasha Ibrahim Mohamed El-Gohary

Associate Professor, National Water Research Center Ministry of Water Resources and Irrigation

Dr. Mona Abdel-Hamid El-Sayed Hagras

Lecturer, Irrigation and Hydraulics Department Faculty of Engineering, Ain Shams University

Cairo, Egypt, 2013

Surface Water Quality Management

Case Study: Rosetta Branch-River Nile

By

Samia Abou El- Ftouh Mohamed

Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of the Doctor of Philosophy in Civil Engineering

Examiners Committee

Prof. Dr. Bülent Topkaya

Akdeniz University Department of Environmental Engineering Antalya, Turkey

Prof. Dr.Iman Mahmoud El Azizy

Professor of Hydraulics Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University

Prof. Dr. Tarik Abdel-Rahman Tawfic

Director, Central Laboratory for Environmental Quality Monitoring Ministry of Water Resources and Irrigation

Prof. Dr. Ahmed Ali Ali Hassan

Professor of Environmental Hydrology Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University

AUTHER CURRICULIM VITA

PERSONAL DATA

Name : Samia Abou El-Ftouh Mohamed

Date of Birth : 5/3/1980

Present Position: Assistant Lecturer,

Irrigation and Hydraulics Dept.

Faculty of Engineering,

Ain Shams University

EDUCATION

1997-2002 : B. Sc. in Civil Engineering, Ain Shams University

2003-2007 : M. Sc. in Civil Engineering

(Irrigation and Hydraulics Dept.), Faculty of Engineering, Ain Shams

University Thesis Title "Environmental Impact of Soil Salinity"

STATEMENT

This thesis is submitted to the Irrigation and Hydraulics

Department, Faculty of Engineering, Ain Shams University in

Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Civil Engineering

The work included in this thesis was carried out by the author

in the Irrigation and Hydraulics Department, Faculty of

Engineering, Ain Shams University from 2007 to 2012.

No part of this thesis has been submitted for a degree or a

qualification at any other university or institution.

Date:

Name: Samia Abou El- Ftouh Mohamed

Signature:

ACKNOLEDGMENT

First, my unlimited thanks to Allah

I would like to thank my supervisor *Prof. Dr. Ahmed Ali Hassan* for his help, stimulating suggestions and encouragement helped me during my work in this thesis.

I would like to extend my thanks to *Prof. Dr. Tarik Tawfic* and *Dr. Rasha El-Gohary* for their supervision, generous support, kind encouregment and for providing me with the data I need.

Special thanks to *Dr.Mona Hagras*, for her supervision, encouragement, great help and valuable criticism during the preparation of this thesis.

Thanks also to eng. **Rasha El-Khishin** for helping me in GIS programming.

Finally, I would like to thank my family and my friends for their support; especially, my mother and my father. Also, I would like to thank my husband *Mohamed Hussien* for his patience and understanding during periods of hard work.

ABSTRACT

Water in sufficient quantity and of adequate quality is necessary for the well-being of all living organisms. Poor water quality can render available supplies unsuitable for its intended uses. Thus, water quality, if not adequately managed, can serve as a serious limiting factor to the future economic development and to the public health. This in turn could lead to irreversible damage to the quantity and quality of available water resources. Thus, the need for better management of the quality of water resources is greatly recognized. Water quality management involves the identification and assessment of point and non-point source pollutants and their sources, and then determining the best management practices to control those pollutants to meet water quality standards.

Rosetta Branch is the main source of water for many cities and industrial zones in the northern part of Egypt. This branch is subjected to different sources of pollution, such as agricultural drains and industrial waste water from industrial zones. This study mainly aims to develop a user friendly Geographic Information Systems (GIS) model using visual basic for application (VBA) in ArcGIS environment. The developed model was used to assess and control the pollution, as well as the pollution sources were identified and mitigation measures

were provided. The work tasks can be divided into three parts.

First a database for the Rosetta branch and pollution sources

was generated, second a Water quality model --WASP7.4--

was adopted to simulate the water quality status. This model

was calibrated and used to simulate different scenarios to solve

the water quality problems, and third a VBA model was

developed to present all data in a GIS toolbar with the WASP

model results for different simulation scenarios. The results

showed that the developed model could facilitate assessing and

predicting for water pollution based on GIS, and can provide

easier process for decision making to decrease the water

pollution.

KEY WORDS: Rosetta Branch, GIS, Water quality,

WASP7.4, VBA

TABLE OF CONTENTS

СНА	CHAPTER I		
1.0 II	NTRO	DDUCTION	
1.1H	BACKGF	ROUND	1
1.2	Pollu	JTION OF RIVER NILE	2
1.3	Probi	LEM DEFINITION	4
1.4	RESEA	ARCH OBJECTIVE	5
1.5	Метн	ODOLOGY	6
1.6	THESI	S STRUCTURE AND ORGANIZATION	6
СНА	PTER	RII	
2.0 L	ITER	ATURE REVIEW	
2.1	WATE	ER RESOURCES MANAGEMENT	9
2.2	EGYPT	r Water Resources and Availability	10
2.3	WATE	r Uses	12
2.4	CHAL	LENGES IN THE WATER SECTOR	13
2.5	WATE	R QUALITY MANAGEMENT	14
	2.5.1	Pollution Control	14
	2.5.2	Water Quality Monitoring	15
	2.5.3	Legislative Aspects	16
2.6	RIVER	NILE SYSTEM POLLUTION SOURCES	16
	2.6.1	Agricultural Drainage Water	17

	2.6.2	Industrial Wastewater	18	
	2.6.3	Municipal Wastewater	19	
2.7	WATE	R QUALITY PARAMETERS	20	
	2.7.1	Physico-Chemical Parameters	20	
	2.7.1	I.1pH	20	
	2.7.1	L2Carbonates and bicarbonates	21	
	2.7.1	1.3Total Alkalinity	22	
	2.7.1	L.4Electrical Conductivity (EC)	22	
	2.7.1	L.5Total Dissolved Solids (TDS)	22	
	2.7.1	L.6Ammonia NH3	23	
	2.7.1	L.7Biochemical Oxygen Demand (BOD)	24	
	2.7.2	Major Cations	25	
	2.7.2	.1Calcium(Ca2+)	25	
	2.7.2	.2Potassium (K+)	25	
	2.7.2	.3Magnesium (Mg2+)	26	
	2.7.2	.4Sodium (Na+)	26	
	2.7.2	.5Chloride (Cl-)	26	
	2.7.3	Major Anions	27	
	2.7.3	.1Nitrite (NO2-)	27	
	2.7.3	.2Nitrate (NO3-)	27	
	2.7.3	.3Phosphate (PO4-3)	28	
	2.7.3	.4Sulfate (SO ₄ ²⁻⁾	29	
	2.7.4	Trace Metals	29	
	2.7.5	Microbiological Parameters	30	
2.8	WATE	R QUALITY MODELING	31	
	2.8.1 N	Mathematical Models	32	
	2.8.2.1 Benefit of mathematical models			

	2.8.2 T	ypes of Mathematical models	33
	2.8.2	1 Theoretical models	33
	2.8.2	2 Empirical models	34
	2.8.3 R	eview of Water Quality Models	35
	2.8.3	1 QUAL2E: Enhanced stream water quality model	36
	2.8.3	.2 HSPF: Hydrological Simulation Program {FORTRAN}	36
	2.8.3	3 The DUFLOW water flow model	38
	2.8.3	4 CE-QUAL-RIV1 water quality model	40
	2.8.3	5 WASP: Water Quality Analysis Simulation Program	41
2.9	WATE	R QUALITY MANAGEMENT USING G I S	43
	2.9.1 T	ypes of GIS Data	44
2.10) Previo	OUS STUDIES	46
	2.10.1	Previous studies on water quality models	46
	2.10.2	Previous Studies on Water Quality management using 0	G I S47
	2.10.3	Previous Studies in Water Quality of Rosetta Branch	49
СНА	PTER	III	
3.0 C	CASE S	STUDY: ROSETTA BRANCH	
3.1	INTRO	DUCTION	55
3.2	Roset	TA BRANCH CHARACTERISTICS	56
	3.2.1	Rosetta Branch hydrological characteristics	56
3.2.2	HYDRAU	ULIC STRUCTURES ALLOCATED ON ROSETTA BRANCH	59
3	.2.3 Hy	draulic gauging Stations	59
3.3	Roset	TA BRANCH WATER QUALITY	60
3	.3.1 Pol	lution Sources on Rosetta Branch	60

	3.3.1	Rahawy drain	62
	3.3.2	Sabal drain	62
	3.3.3	El-Tahrrer drain	63
	3.3.4	Zawiet El-Bahr	63
	3.3.5	Tala drain	63
	3.3.6	El - Malyia Company	64
	3.3.7	Salt and Soda Company	64
3.4	WATE	R QUALITY MONITORING OF ROSETTA BRANCH	65
СНА	PTER	RIV	
4.0 M	1ETH	ODOLOGY	
4.1	Rose	TTA BRANCH DATA IN GIS	68
4.2	WASI	P7 (Water Quality Analysis Simulation Progra	ам)71
	4.2.1	Selection of WASP7 Model in this study	71
	4.2.2	The WASP Components	71
	4.2.3	The Basic of WASP7	74
	4.2.4	General Mass Balance Equation	76
	4.2.5	The WASP Model Network.	78
	4.2.6	Overview of WASP7 Eutrophication	80
	4.2.7	Dissolved Oxygen modeling in WASP	82
	4.2.8	WASP Implementation	83
4.3	Rose	TTA WATER QUALITY MANAGEMENT MODEL	87

	4.3.1	The GIS Application and Modules	87
	4.3.2	Rosetta Branch module	88
	4.3.3	Sources of Pollution module	88
	4.3.4	Water Quality Data module.	88
	4.3.5	WASP modeling module	89
	4.3.6	Reports module	89
СНА	PTER	${f v}$	
5.0 A	NAL:	YSIS AND DISCUSSION	
5.1	WATE	R QUALITY ASSESSMENT FOR ROSETTA BRANCH	90
	5.1.1	First Assessment process for Rosetta Branch	92
	5.1.2	Second Assessment process for Pollution Sources	108
5.2	WASF	Modeling.	116
	5.2.1	Introduction	116
	5.2.2	Steps of Work in WASP7	116
	5.2.3	Main Segment Characteristics.	117
	5.2.4	Boundary Segment Characteristics	119
	5.2.5	Rosetta branch flow function	119
	5.2.6	Model Calibration	121
	5.2.7	Model Constants	124
	5.2.8	Model Run.	129

	5.2.9	Water Quality Management Scenarios	131
5.3	Roset	TTA WATER QUALITY MANAGEMENT MODE	L USING GIS141
	5.3.1 R	COSETTA BRANCH MODULE	142
	5.3.2 S	OURCES OF POLLUTION MODULE	144
	5.3.3 V	VATER QUALITY DATA MODULE	145
	5.3.4 W	VASP Modeling module	149
	5.3.5 R	REPORT MODULE	153
	PTER	R VI LUSIONS AND RECOMMENDA	TIONS
6.1	Conci	LUSIONS	157
6.2	RECOM	MMENDATIONS	161
REF	EREN	ICES	
APP	ENDIX	XES	
ARA	BIC S	SUMMRY	

LIST OF FIGURES

PAGE

FIGURE

3.1	Rosetta Branch of the River Nile	56
3.2	Discharge of Rosetta Branch downstream Delta Barrage	58
3.3	GIS Map of Pollution Sources on Rosetta River Nile Branch	61
3.4	Water Quality Sample locations in Rosetta Branch and pollution sources	66
4.1	Basic WASP Structure and Kinetic System.	73
4.2	Coordinate System for Mass	76
4.3	WASP Model Segmentation Schematic	79
4.4	EUTRO State Variables	81
4.5	Modified Streeter Phelps	84
4.6	Rosetta Water Quality Management Model	89
5.1	GIS graph for average BOD for year 2004 versus standard	92
5.2	GIS graph for average BOD for year 2006 versus standard	93
5.3	GIS map for measured BOD values in different months in each segment, for year 2008	94

5.4	GIS graph for measured BOD values in different	95
	months for year 2008 versus standard	
5.5	GIS graph for average BOD for year 2008 versus	96
	standard	
5.6	GIS map for average BOD values in each segment,	97
	2008	
5.7	GIS graph for average NH ₃ for year 2004 versus	98
	standard	
5.8	GIS graph for average NH ₃ for year 2006 versus	99
	standard	
5.9	GIS map for measured NH ₃ values in different months	100
	in each segment	
5.10	GIS graph for measured NH3 values in different	101
	months for year 2008 versus standard	
5.11	GIS graph for average NH ₃ for year 2008 versus	102
	standard	
5.12	GIS map for average NH ₃ values in each segment for	103
	year 2008	
5.13	GIS graph for average NO ₃ for year 2004 versus	104
	standard	
5.14	GIS graph for average NO ₃ for year 2006 versus	104
	standard	
5.15	GIS graph for average NO ₃ for year 2008 versus	105
	standard	
5.16	GIS map for average NO ₃ values in each segment for	105
	year 2008	