

Faculty of Dentistry

Proliferation Capacity and Osteogenic Potential of Human Dental Pulp Stem Cells from Permanent and Exfoliated Deciduous Teeth

Thesis

Submitted to Faculty of Dentistry Ain Shams University in partial fulfillment of the requirement for Doctoral Degree in Oral Biology

By

Riham Mohamed Aly El Saied

M.Sc (Ain Shams University-2009)
B.D.S (Ain Shams University-2002)
Assistant Researcher
Basic Dental Science Department,
National Research Centre

Faculty of Dentistry
Ain Shams University
2013

Under Supervision of

Prof. Dr Souzy Farid Shinaishin

Head of Oral Biology Department Faculty of Dentistry, Ain Shams University

Prof. Dr. Nadia Lashin Soliman

Head of Basic Dental Science Department Vice President of Orodental Division National Research Centre

Prof. Dr. Effat Ahmed Abbas

Professor of Oral Pathology Basic Dental Sciences Department National Research Centre

Dr. Reham MagdyAmeen

Assistant Professor of Oral Biology Faculty of Dentistry, Ain-Shams University

Acknowledgement

All thanks and praise to God, who guided and enabled me to fulfill this thesis.

I'd like to express my deep gratitude and appreciation to **Prof. Dr**Souzy Shinaishan Head of Oral Biology Department. Dr Souzy,

you have helped and supported me greatly. No words can express

my deep appreciation and gratitude for your incredible support

and understanding.

I am forever indebted to my mentor **Prof. Dr. Nadia L. Soliman**Head of Basic Dental Science Department National Research
Centre whose help, stimulating suggestions and encouragement
helped me in all the time of research and writing of this thesis. I
can't thank her enough.

I would like to thank my **Professor Dr Effat Ahmed Abbas**, Professor of Oral Pathology for her effort, time and indeed valuable advice during all the different stages of this work.

I am also grateful to **Dr Reham Magdy Ameen** Assistant Professor of Oral Biology Faculty of Dentistry, Ain-Shams University who assisted me generously and for her extremely precious help, continuous support.

I owe a great debt of gratitude and appreciation to **Prof. Dr.**Medhat A. El-Zainy Professor of Oral Biology and Former vice

Dean of Society and Environmental Affairs Faculty of Dentistry,

Ain Shams University. From the very first year as students

Profesor Medhat has introduced us to the world of Dentistry, he
has been a source of encouragement, sound advice, fatherly
guidance and support.

I would like to thank the entire staff of Oral Biology Department Ain Shams University for their cooperation and also my deepest thanks to my colleagues and staff of the Basic Dental Science Department at the National Research Centre.

Dedication

To my Family

Contents

<u>Subject</u>	<u>Page No.</u>
Introduction	
Review of Literature	
Bone marrow mesenchymal stem cells	7
Dental stem cells	9
Dental Pulp Stem Cells (DPSC)	12
Stem Cells from Human Exfoliated	d Deciduous Teeth
(SHED)	14
Stem Cells Derived from Human	Natal Dental Pulp
(hNDPs)	19
Periodontal Ligament Stem Cells (PDLS	Cs)20
Stem Cells from Apical Papilla (SCAP).	23
Dental Follicle Precursor Cells (DFPCs)	26
Dental MSCs vs. BMMSCs	29
Isolation of Dental Pulp Stem Cells	30
Osteogenic Differentiation of DPSC and	SHED39
Factors Influencing Dental Stem Cells D	oifferentiation 42
Cryopreservation of DPSC	47
Regenerative medicine and Tissue Engir	neering49
Future Prospects	57

Aim of the Study	61
Materials and Methods	63
A) Sample Collection and Cell Isolation:	63
I) DPSC Group:	63
II) SHED group:	64
Cell isolation and Culture	64
Subculturing "Passaging:	67
B) Assessing Proliferation Capability:	68
1) Colony formation efficiency testing:	68
2) MTT assay	69
Osteogenic Differentiation	70
C) Evaluation of Osteogenic Differentiation of Cul	ltured
Cells:	71
a) Testing of the mineralization capacity by Alizarir	n Red
Stain:	73
b) Reverse Transcriptase polymerase chain rea	action
(RT-PCR):	74
1) RNA Isolation	74
2) Synthesis of c DNA:	75
3) DNA Amplification:	76
Results	81
A) Isolation and Characterization:	
B) Cell Proliferation assessment:	88

1) Colony Formation:
2) MTT Assay:
C) Evaluation of Osteogenic Differentiation of Cultured
Cells:93
a) Alizarin Red staining:
DPSC and SHED Control sub groups:
DPSC and SHED osteogenic media subgroups:
DPSC and SHED BMP-2 subgroups:
b) RT-PCR: 100
DPSC and SHED Control subgroups:
DPSC and SHED Osteogenic subgroups: 100
DPSC and SHED BMP-2 subgroups:
Discussion
Conclusions 119
Summary 121
References 127

List of Abbreviations

BMMSC: Bone Marrow Mesenchymal Stem Cells

BMP : Bone Morphogenetic Protien

BSP II : Bone Sialoprotien II

CD : Cluster of Differentiation

CFU-F : Colony Forming Unit- Fibroblast

DEX : Dexamethasone

DFSC: Dental Follicle Stem Cells

DMEM : Dulbeco Modified Eagle Medium

DPSC: Dental Pulp Stem Cells

EBM : Eagle Basal Medium

ED : Enzyme Digestion

EDTA : Ethylene Diamine Triacetic Acid

ESC: Embryonic Stem Cells

FBS : Fetal Bovine Serum

FGF : Fibroblast Growth Factor

GP : Glycerophosphate

HLA : Human Leukocyte Antigen

hNDP : Stem cells from Human Natal Dental Pulp

HS: Human Serum

MEM : Modified Eagle Medium

MSC: Mesenchymal Stem Cells

MTT : Methyl Thyazol Tetrazolium

OC : Osteocalcin

ODHPSC: Osteoblast from Human Pulpal Stem Cells

OG : Out Growth

PBS: Phospate Buffer Solution

PD: Population Doubling

PDLSC: Periodontal Ligament Stem Cells

RA : Retinoic Acid

RT-PCR: Reverse Transcriptase- Polymerase Chain

SCAP : Stem Cells from Apical Pappilla

SCID : Severe Combined Immunodeficiency

SHED : Stem Cells from Human Exfoliated Deciduous

SMA : Smooth Muscle Actin

TGF: Transforming Growth Factor

α MEM : alpha Modified Eagle Medium

List of Figures

Figure	Title	Page No.
Figure 1 The	DPSC niche in human den	ntal pulp 10
Figure 2 Sche	matic chart summarizing t	the methodology 78
Figure 3 Lami	inar (Safety Cabinet)	79
Figure 4 Neub	oaue Haemocytometer	79
Figure 5 Ther	mocycler	80
Figure 6 Photo	omicrograph showing isol	ated DPSC after
enzymatic dig	estion and initial seeding.	83
Figure 7 Photo	omicrograph showing isol	ated SHED after
enzymatic dig	estion and initial seeding.	83
Figure 8 Spino	dle-like and stellate shape	d appearance in SHED
group		84
Figure 9 Photo	omicrograph showing DPS	SC (P0 day 16) after
reaching 70-8	0% confluence	84
Figure 10 Pho	tomicrograph showing DI	PSC of the first passage
(P1)		85
Figure 11 Pho	tomicrograph showing DI	PSC at second passage
(P2)		85
Figure 12 Pho	otomicrograph showing D	PSC at third passage
(P3)	•••••	86
Figure 13 Pho	tomicrograph showing the	e first passage (P1) of
SHED		86
Figure 14 Pho	tomicrograph showing SF	HED at third passage
(P3)		87
Figure 15 Pho	otomicrograph showing ag	ggregates of cells in
Figure 16 Pho	tomicrograph showing inc	crease in the colonies
formed by DP	SC	89

Figure 17 Photomicrograph showing aggregates of cells in SHED90
Figure 18 A higher magnification of the previous
photomicrograph 90
Figure 19 Proliferation of DPSC and SHED detected by MTT
assay 92
Figure 20 Cell viabilities of DPSC and SHED92
Figure 21 Photomicrograph of DPSC Control group after 22
days 95
Figure 22 Photomicrograph of SHED Control group after 22
days 95
Figure 23 Photomicrograph of DPSC Osteogenic group on day
1296
Figure 24 Photomicrograph of SHED Osteogenic group on day
1096
Figure 25 Photomicrograph of DPSC Osteogenic group on day
22
Figure 26 Photomicrograph of DPSC Osteogenic group on day
22
Figure 27 Photomicrograph of SHED Osteogenic group on day 22
Figure 28 Photomicrograph of DPSC BMP2 group on day 22.98
Figure 29 Photomicrograph of SHED BMP2 group on day 22.99
Figure 30 Bone Sialoprotien II gene expression on day 12 in
DPSC Osteogenic and BMP2 Groups101
Figure 31 Osteocalcin gene expression on day 12 in DPSC
Osteogenic and BMP2 Groups101
Figure 32 Bone Sialoprotien II gene expression on day 10 in
SHED Osteogenic and BMP2 Groups102
Figure 33 Osteocalcin gene expression on day 10 in SHED
Osteogenic and BMP2 Groups102
Figure 34 Bone Sialoprotien expression on day 22 in all DPSC
and SHED groups103

Figure 35	Osteocalcin gene expression on day 22 in all DPSC	
and SHED	groups10)3

List of Tables

Table No.	Title	Page	No.
Table 1 Types of De	ntal Stem cell	• • • • • • • • • • • • • • • • • • • •	28
Table 2: Primer sequ	uence of Osteocalci	n and Bone	
SialoprotienII		• • • • • • • • • • • • • • • • • • • •	77

Introduction

In recent years, stem cell researches have grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that range from Alzheimer's disease to cardiac ischemia and regenerative medicine, like bone or tooth loss. Based on their ability to rescue and/or repair injured tissue and multiple partially restore organ function, of types stem/progenitor cells have been speculated. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental tissues are considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications (Estrela et al., 2011).

Interestingly, there are several types of dental stem cells that are well characterized and described both in vitro and in vivo. They include dental pulp, periodontal ligament, apical papilla and dental follicle precursor cell. (*Gronthos et al.*, 2000; *Miura et al.*, 2003; *Seo et al.*, 2004; *Morsczeck et al.*,