Evaluation of Pre-Operative Nutritional Status as a Prognostic Value of Outcome in Patients Subjected to Living Donor Liver Transplantation

Thesis Submitted for Partial Fulfillment of MD Degree in Critical Care Medicine

By

Yahya Abdel Twab Mohamed Meky M.B.,B.Ch, M.Sc. of Critical Care Medicine Cairo University

Under Supervisin of

Prof. Dr / Mohamed Abdel Khalek Mohamed Ali

Professor of Anaesthesiology and Intensive Care Medicine Faculty of Medicine – Ain Shams University

Prof.Dr/ Hanan Mahmoud Farag Awad

Assistant Professor of Anaesthesiology and Intensive Care Medicine

Faculty of Medicine – Ain Shams University

Dr / Mahmoud Ahamad Abdel-Hakim Galal

Lecturer of Anaesthesiology and intensive Care Medicine Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2012

Acknowledgement

First and foremost, I thank Allah who gave me the strength to fulfill this work.

I would like to express my sincere gratitude to **Prof. Dr**/ **Mohamed Abdel Khalek Mohamed Ali,** Professor of
Anaesthesiology and Intensive Care Medicine, Faculty of
Medicine – Ain Shams University, for his kind supervision,
encouragement and constant help. Under his supervision, I have
the honor to complete this work.

I am grateful to **Dr/ Hanan Mahmoud Farag Awad**, Assistant Professor of Anaesthesiology and Intensive Care Medicine Faculty of Medicine – Ain Shams University, for her constant supervision and honest assistance. Her moral support cannot be praised enough with words.

It is a great honor to express my sincere appreciation to **Dr / Mahmoud Ahamad Abdel-Hakim Galal**, Lecturer of, Anaesthesiology and intensive Care Medicine, Faculty of Medicine – Ain Shams University, for his kind supervision, continuous encouragement and persistent support

Yehia Abdel Cawab

Contents

	Page No.
List of abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	
Aim of the Work	4
Review of Literature	
Living Donor Liver Tyransplant	5
Methods for Nutritional Status Evaluation	21
Malnutrition	44
Impact of Nutritional Status on Postoperative LDL	Γ65
Patients and Methods	73
Results	77
Discussion	
Conclusion	116
Summary	117
References	
Arabic Summary	

List of Abbreviations

AASLD : American Association for the Study of Liver Diseases

AH : Acute hepatitis

AMC : Arm muscle circumference

ASPEN: American Society for Parenteral and Enteral Nutrition

BIA : Bioelectrical impedance analysis

BMI : Body mass index

CAH : Chronic active hepatitisCHI : Creatine-height index

CMV : Cytomegalovirus

CT : Computed tomographyCTP : Child-Turcotte-Pugh

DCH : Delayed cutaneous hypersensitivity
 DDLT : Deceased donor liver transplantation
 DEXA : Dual-energy x-ray absorptiometry

EBV : Ebstein Barr virus

ESLD : End-stage liver disease

FFM : Fat-free mass

FGD : Fist-grip dynamometry

FM : Free mass

HBV : Hepatitis B virus

HCC: Hepatocellular carcinoma

HCV : Hepatitis C virus

HIV : Human immunodeficiency virus

IBW : Ideal body weightICU : Intensive care unit

Kg : Kilograms

LDLT : Living-donor liver transplantation

LT : Liver transplantation

MAC : Midarm muscle circumference
MAMC : Mid-arm muscle circumference

MELD : Model for End-Stage Liver DiseaseMHD : Maintenance hemodialysis patients

MNA : Mini-Nutritional AssessmentMST : Malnutrition Screening Tool

MUST : Malnutrition Universal Screening Tool

N : Nitrogen

OLT : Orthotopic liver transplantation

PAB : Prealbumin

PBC : Primary biliary cirrhosis
PCM : Protein-calorie malnutrition

PCV : Packed red cells

PEM : Protein-energy malnutrition

PINI: Prognostic Inflammatory and Nutritional Index

PN: Parenteral nutrition

PNI : Prognostic Nutrition IndexRBP : Retinol-binding proteinSC : Sclerosing cholangitis

SGA : Subjective global assessment

TPN: Total parenteral nutrition

TSF : Triceps skin fold

TTR : Transthyretin

UUN : Urinary urea nitrogen

List of Tables

Table	No. Title	Page No.
Table (1):	Transplantation Evaluation Process:	6
Table (2):	Child-Turcotte-Pugh (CTP) Scoring Syste Assess	
Table (3):	Protocol for Evaluation of Potential:	9
Table (4):	Criteria of living donors	10
Table (5):	Medical Complications in the Immediate Transplantation Period	
Table (6):	Classification of Nutritional Status by Mass Index in Adults	
Table (7):	Hepatically Synthesized Proteins Used Assessment of Nutritional Status	
Table (8):	Subjective Global Assessment (SGA Nutritional Status	
Table (9):	Mini Nutritional Assessment (MNA):	39
Table (10):	Methods for Nutritional Status Evaluation	41
Table (11):	Definitions of malnutrition:	45
Table (12):	Three validated tools for nutrition screening their rating systems	_
Table (13):	Etiology of Malnutrition in ESLD	53
Table (14):	Goals of Nutritional Therapy in Patients ESLD Waiting for LT:	
Table (15):	Prognostic Indices in Hospitalized Patients	s71
Table (16) :	Demographic characteristics of the two grou	ıps78
Table (17) :	Risk factors in the two studied groups	80
Table (18) :	Child score in the two studied groups	81

Table (19):	Anthropometric measures of the two studied groups	83
Table (20):	Subjective global assessments in the two studied groups	84
Table (21):	Mean values of hematological and biochemical parameters of the two studied groups	86
Table (22): N	Mean values of prealbumin and transferrin in the two studied groups	88
Table (23):	Mean values of prealbumin and transferrin in the two studied groups	89
Table (24):	Multinominal logistic regression used for prediction of mortality in the studied group	90
Table (25):	Complications in the two studied groups	91
Table (26):	Mortality in the two studied groups	93
Table (27):	Mid arm circumference (MAC) correlation with ICU stay	94
Table (28):	Mid arm circumference (MAC) correlation with days of mechanical ventilation	94
Table (29):	Triceps skin fold (TSF) correlation with ICU stay:	95
Table (30):	Triceps skin fold (TSF) correlation with days of mechanical ventilation	96
Table (31):	Prealbumin levels correlation with ICU stay:	97
Table (32):	Prealbumin and albumin levels correlation with mechanical ventilatory days:	97
Table (33):	Transferrin levels correlation with ICU stay	98
Table (34):	Transferrin levels correlation with mechanical ventilatory days:	99

List of Figures

Figure N	o. Title	Page No.
Figure (1):	Hepatic vasculature and bile ducts	12
Figure (2):	Segmental anatomy of the liver as original described by Couinaud	•
Figure (3):	Risk factors in the two studied groups	80
Figure (4):	Child score in the two studied groups	81
Figure (5):	Anthropometric measures of the two stud groups.	
Figure (6):	Subjective global assessments in the t studied groups	
Figure (7):	Mean value of prealbumin in the t studied groups	
Figure (8):	Mean value of transferrin in the two stud groups.	
Figure (9): 1	Mean value of prealbumin in the two stud groups	
Figure (10):	Mean value of transferrin in the two stud groups	
Figure (11):	Complications in the two studied groups.	92
Figure (12):	Mortality in the two studied groups	93
Figure (13):	Mid arm circumference (MAC) correlat with days of mechanical ventilation	
Figure (14):	Triceps skin fold (TSF) correlation we days of mechanical ventilation	

Figure (15):	Prealbumin levels correlation with mechanical ventilatory days9	8
Figure (16):	Transferrin levels correlation with mechanical ventilatory days9	9
Figure (17):	Cut-off point of serum prealbumin for prediction of mortality	0
Figure (18):	Cut-off point of serum transferrin for prediction of mortality	1

Introduction

Liver transplantation is potentially applicable to any acute or chronic condition resulting in irreversible liver dysfunction, provided that the recipient does not have other conditions that will preclude a successful transplant. Metastatic cancer outside liver, active drug or alcohol abuse and active septic infections are absolute contraindications. While infection with HIV was once considered an absolute contraindication, this has been changing recently. Advanced age and serious pulmonary or other disease may also transplantation (relative contraindications). Most transplants are performed for chronic liver diseases that lead to irreversible scarring or cirrhosis of the liver. Another cause is cryptogenic liver disease (Adam et al., 2003).

Living donor liver transplantation has emerged in recent decades as a critical surgical option for patients with end stage liver disease, such as cirrhosis and/or hepatocellular carcinoma often attributable to one or more of the following: long-term alcohol abuse, long-term untreated Hepatitis C infection, long-term untreated Hepatitis B infection. The concept of living donor liver transplant is based on the remarkable regenerative capacities of the human liver and the widespread shortage of cadaveric livers for patients awaiting transplant. In living donor liver transplant, a piece of healthy liver is surgically removed from a living person and transplanted into a recipient,

immediately after the recipient's diseased liver has been entirely removed (Tuttle-Newhall et al., 2005).

Nutrition assessment and therapy in end-stage liver disease has become increasingly important with the advent of living donor liver transplantation. Reduced lean body mass, increased risk of sepsis, and altered metabolism carbohydrates, protein, and fat are characteristic of patients with liver dysfunction (Akerman et al., 1993).

Appropriate nutritional assessment and identification of specific nutrition requirements, whether maintenance, repletion, or the need for weight reduction prior to transplantation, require individualized assessment and, in some cases, aggressive nutrition intervention. The goals are to reduce postoperative complications after transplantation (Rebecca et al., 2008).

Nutritional therapy is essential in patients with end stage liver diseases and during all phases of liver transplantation. Adequate nutritional assessment before a transplant helps identify individual problems and may prevent complications. A multidisciplinary team involving the patient's primary care physician, hepatologist, intensivist, registered dietitian, and nursepractitioner should be involved in management and education of patients under liver transplantation evaluation. In the acute posttransplant phase, early nutritional support can reduce complications. Long-term management should be aimed at preventive measures for the metabolic complications of liver transplantation. Provision of adequate nutritional support before

and after liver transplantation will lead to improved outcomes (Tran et al., 2004).

Patients with end-stage liver disease often reveal significant protein-energy malnutrition, which may deteriorate after listing for transplantation. Since malnutrition affects posttransplant survival, precise assessment must be an integral part of pre- and post-surgical management. While there is wide agreement that aggressive treatment of nutritional deficiencies is required, strong scientific evidence supporting nutritional therapy is sparse. In practice, oral nutritional supplements are preferred over parenteral nutrition, but enteral tube feeding may be necessary to maintain adequate calorie intake. Protein restriction should be avoided and administration of branchedchain amino acids may help yield a sufficient protein supply. Specific problems such as micronutrient deficiency, fluid balance, cholestasis, encephalopathy, and comorbid conditions need attention in order to optimize patient outcome (Felix Stickel et al., 2008).

Aim of the Work

The purpose of this study was to examine preoperative nutritional status as a prognostic parameter of outcome in patients subjected to living donor liver transplantion.

Living Donor Liver Tyransplant

A living-donor liver transplantation, or transplant, is when a live person donates a part of his or her healthy liver. The donated part then grows to full size in the person who receives it (the recipient). After the transplant, the donor's liver also grows back to full size over a very short period of time, usually days or weeks. Sometimes, however, it can take up to several months. The donor may be a family member, such as a parent, sister, brother, or adult child. The donor can also be a husband or wife. Living-donor transplantation was first done in the 1980s in children as a way to shorten the long wait times for a liver (*Robert et al.*, 2007).

Living donor liver transplantation (LDLT) is undoubtedly the single most important development in liver transplantation in the past 10 years. Apart from the growing need, a better understanding of the intrahepatic liver anatomy and liver regeneration, more precise and safe liver-splitting techniques, and refinements in recipient technique and postoperative management have propelled the emergence and wide acceptance of LDLT (*Lo et al.*, 1997).

Live-donor liver transplantation:

The details of the formal liver transplantation evaluation vary from center to center, but the essentials are to establish that liver transplantation is indicated in the management of the potential recipient's liver disease, the patient has no

comorbidities severe enough to preclude transplantation, and the patient has adequate emotional and social resources to undergo a major surgical procedure and continue on long-term immunosuppression afterward; table (1).

Table (1): Transplantation Evaluation Process:

Financial screening Secure approval for evaluation **Medical evaluation**

Hepatology evaluation Confirm diagnosis and optimize management

Laboratory testing Assess hepatic synthetic function, serum electrolytes, renal function, viral serologies, markers of other causes of liver disease, tumor markers, ABO-Rh blood typing; 24-hour urine for creatinine clearance; urinalysis and urine drug screen.

Cardiac evaluation: Electrocardiography two-dimensional and echocardiography, stress testing and cardiology consult if risk factors are present and/or patient is age 40 years or older

Hepatic imaging: Ultrasonography with Doppler to document portal vein patency, triple-phase computed tomography or gadolinium magnetic resonance imaging for tumor screening.

General health assessment: Chest film, prostate specific antigen level (men), Pap smear and mammogram (women), colonoscopy if patient is age 50 years or older or has primary sclerosing cholangitis.

Transplantation surgery evaluation: Assess technical issues and discuss risks of procedure.

Anesthesia evaluation: Required if unusually high operative risk, e.g., patient has portopulmonary hypertension, hypertrophic cardiomyopathy, previous anesthesia complications.

Psychiatry or psychology consultation: If history of substance abuse, psychiatric illness, or adjustment difficulties.

Social work evaluation: Address potential psychosocial issues and possible effect of transplantation on patient's personal and social system.

Financial and insurance counseling itemize costs of transplantation and post-transplantation care; help develop financial management plans

Nutritional evaluation: Assess nutritional status and patient education

(O'Leary et al., 2008)