FRACTURE STRENGTH AND CORONAL SEALING ABILITY OF ENDODONTICALLY TREATED TEETH RESTORED WITH DIFFERENT POST SYSTEMS

(An In-Vitro Study)

Thesis

Submitted to Endodntic Department,

Faculty of Dentistry, Ain Shams University

In Partial Fullfillment for the Requirement

of Master Degree in Endodntics

By Wassim Essam Boshra

(B.D.S) Faculty of Dentistry Ain Shams University

Faculty of Dentistry Ain Shams University (2012)

Supervised by

Dr. Ehab El Sayed Hassanein

Professor of Endodontics and Chairman Of Endodontic Department, Faculty of Dentistry, Ain Shams University

Dr. Kariem Mostafa Elbatouty

Associate Professor of Endodontics Faculty of Dentistry, Ain Shams University,

> Faculty of Dentistry Ain Shams University (2012)

قوة الكسر والإغلاق التاجى للأسنان المعالجة جذريا والمرممة بنظم اوتاد مختلفة

دراست معملیت

توطئه للحصول على درجة ماجستير في علاج الجذور كلية طب اسنان - جامعة عين شمس

مفدمن من

وسيم عصام بشرى

بگالوريوس طب (سنان گلية طب (سنان - جامعة عين شمس.

> کلیۂ طب|سنان جامعۂ عین شمس ۲۰۱۲

المشرفون

أ.د إيهاب السيد حسانين

الستاذ ورئيس قسم علاج الجزور كلية طب السنان - جامعة عين شمس.

أ.م.د كريم مصطفى البطوطي

أستاذ مساعر علاج الجزور كلية طب اسنان - جامعة عين شمس

> کلیۃ طب|سنان جامعۃ عین شمس ۲۰۱۲

This work is dedicated to . . .

My beloved father, to whom I owe everything I ever did in my life and will achieve

My mother for always being there for me

My sister for her support

Finally my wife and my lovely twins (Seif and Mariam) for being the light of my life

irst thanks to GOD to whom Prelate any success in achieving any work in my life.

I would like to express my deepest gratitude and appreciation to **Prof. Ehab Elsayed Hassanein**, Professor of Endodontics and Chairman of Endodontic Department, Faculty Of Dentistry, Ain shams university. It has been a great honour to work under his kind supervision.

I would also like to extend appreciation to Tr. Kareim Mostafa Elbatouty, Associate Professor of Endodontics, Endodontic Department, Faculty of Dentistry, Ain Shams University for his sincere guidance and cooperation.

Finally my extremely warm and sincere gratitude goes with love to **Tr. Wagdi Farid Ezzat** for his sincere support.

Wassim Essam Boshra

List of Contents

	Title	Page No.
	List of tables	II
•	List of Figures	IV
•	Introduction	1
•	Review of Literature	3
•	Aim of the Study	42
•	Material and Methods	43
•	Results	56
•	Discussion	78
•	Conclusion	91
•	Recommendation	92
•	Summary	93
•	References	97
	Arabic Summary	

List of Tables

Table Mo.	Title	Page	Mo.
Table (1):	Descriptive statistics of fracture resist test results for both irrigation as fun of post.	ction	57
Table (2):	Comparison of fracture resistance re (Mean±SDs) between Naocl and groups with metal posts	CHX	59
Table (3):	Comparison of fracture resistance re (Mean ± SDs) between NaOCl and groups with Glass fiber post	CHX	60
Table (4):	Comparison of fracture resistance re (Mean ± SDs) between NaOCl and groups with zirconia post	CHX	61
Table (5):	Comparison between fracture resist test results with NaOCl irrigation function of post	n as	63
Table (6):	Comparison between fracture resist test results with CHX irrigation as fun of posts.	ction	64
Table (7):	Two way analysis of variance ANOVA of significance comparing vari affecting fracture resistance mean value	ables	66
Table (8):	Descriptive statistics of coronal leatest results for both irrigation as fun of posts.	ction	68
Table (9):	Comparison of coronal leakage re (Mean ± SDs) between NaOCl and groups with metal post.	CHX	70

List of Tables (Cont...)

Table No.	Title	Page No.
Table (10):	Comparison of coronal leakage re (Mean ± SDs) between NaOCl and groups with Glass fiber post	CHX
Table (11):	Comparison of coronal leakage re (Mean ± SDs) between NaOCl and groups with zirconia post	CHX
Table (12):	Comparison between coronal leakage results with NaOCl irrigation as funct posts.	ion of
Table (13):	Comparison between coronal leakage results with CHX irrigation as function post.	ion of
Table (14):	Two way analysis of variance ANOVA of significance comparing variaffecting coronal leakage mean values.	iables

List of Figures

Fig. No.	Title (J	Dage No.
Fig. (1):	A diagram showing classification samples.	
Fig. (2):	A diagram showing the Coronal to structure was reduced to flat plane height of 2 mm.	at
Fig. (3):	A Diagram showing post space and opreparation	
Fig. (4):	A photograph showing the univer- loading testing machine (LRX-plus Ll instrument).	yod
Fig. (5):	Showing Schematic drawing of clin model and study load angle	
Fig. (6):	Showing the angle of the rod of instrument directed at the palatal surful 3mm below the incisal edge of the to model.	face oth
Fig. (7):	A diagram showing fluid infiltration test apparatus.	_
Fig. (8):	A column chart of fracture resistance m values for both irrigation	
Fig. (9):	A column chart of fracture resistance m values for NaOCl and CHX groups w metal post	vith
Fig. (10):	A column chart of fracture resistance m values for NaOCl and CHX groups w Glass fiber post	vith
Fig. (11):	A column chart of fracture resistance m values for NaOCl and CHX groups w zirconia post	vith

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (12):	A column chart of fracture resistance revalues for NaOCl irrigation as function post	on of
Fig. (13):	A column chart of fracture resistance revalues for CHX irrigation as function post	on of
Fig. (14):	A column chart of comparing variaffecting fracture resistance mean valu	
Fig. (15):	A column chart of coronal leakage revalues for both irrigation as function post.	on of
Fig. (16):	A column chart of coronal leakage revalues for NaOCl and CHX groups metal post.	with
Fig. (17):	A column chart of coronal leakage revalues for NaOCl and CHX groups Glass fiber post	with
Fig. (18):	A column chart of coronal leakage revalues for NaOCl and CHX groups zirconia post	with
Fig. (19):	A column chart of coronal leakage revalues for NaOCl irrigation as function post	on of
Fig. (20):	A column chart of coronal leakage revalues for CHX irrigation as function post	on of
Fig. (21):	A column chart of comparing vari affecting coronal leakage mean values	

List of Abbreviations

Abb.	Full term
CEJ	Cementoenamel junction
CHX	Chlorohexidine
NaOCl	Sodium hypochlorite

INTRODUCTION

fter root canal treatment, the restoration of the endodontically treated teeth (ETT) is required. This is because endodontically treated teeth are more susceptible to fracture than vital one. Post and core systems are frequently used to restore endodontically treated teeth with extensive loss of tooth structure. These restored teeth have been found to exhibit high risk of fracture than vital teeth due to caries, trauma, and excessive removal of radicular dentin during endodontic treatment (1).

The choice of an appropriate restoration for endodontically treated teeth is guided by strength and esthetics. Posts are classified into two types; non esthethic posts (stainless steel, titanium), esthetic (glass fiber, zirconium). Non esthetic metallic posts used were increasingly being called into question for reasons of esthetics and biocompatibility; where they produce a greyish discoloration of all ceramic crowns and the surrounding gingiva (2). In addition roots in which metallic posts were inserted are more prone to fracture due to high modulus of elasticity of metal posts (200Mpa) compared to that of dentin (14Mpa).

The restoration of endodontically treated teeth with metal-free, physiochemically homogeneous material (3) that have physical properties similar to those of dentin has become a major objective in dentistry. New tooth coloured posts (glass fiber reinforced polymer, and ceramic posts) have improved the esthetics of teeth restored with posts and cores. In addition, zirconia ceramic may offer superior strength compared to other post materials.

Therefore the purpose of the current study was to evaluate and compare the fracture resistance and coronal sealing ability of different types of metallic and non metallic post systems.

REVIEW OF LITERATURE

uccessful root canal treatment of intact tooth reduces its resistance to fracture by 5% and in situations where MOD restorations, the resistance to fracture reduced by 69%. Also coronal leakage is greatly affected, which leads to failure. Some authors stated that post space preparations that is made to increase the fracture resistance can cause an increase in coronal leakage.

Effect of post insertion on Fracture resistance endodontically treated teeth:

In an effort to improve the fracture resistance of endodontically treated teeth restored with post and core system, researches has focused on post materials, designs, luting agents and ferrule effect. It was hypothesized that the dentin like rigidity allows for reduction of stress concentration between dentin-post interface and forces could be more evenly transferred to the root. Consequently, the incidence of root fracture might decrease. Several studies have investigated the fracture resistance of fiber posts since their introduction and compared it with that of metal posts. Some authors reported that endodontically treated teeth restored with fiber posts showed decrease fracture resistance compared to that of teeth restored with metal posts.

Mannocci et al. (1999)⁽⁴⁾ compared the performances of teeth restored with quartz fiber, carbon-quartz fiber, and zirconium-dioxide posts covered with all-ceramic crowns when subjected to a cyclic loading test performed in a wet environment. Forty single-rooted human lower