Neurobehavioral study on the possible effect of methyl palmitate in rats

A thesis submitted in partial fulfillment for the requirements of the master degree in pharmaceutical sciences

By

Marwa Mohammad Saeed

Bachelor of Pharmaceutical sciences, Ain Shams University, 2000

Under the Supervision of:

Dr. Azza Abd El-Fattah

Professor and Head of Pharmacology and Toxicology Department

Faculty of Pharmacy-Girls, Al-Azhar University

Dr. Ebtehal EL-Demerdash Zaki

Professor and Head of Pharmacology and Toxicology Department

Faculty of Pharmacy, Ain Shams University

Dr. Hebatalla Ibrahim

Lecturer of Pharmacology and Toxicology Department
Faculty of Pharmacy-Girls, Al-Azhar University

Ain Shams University 2013

Contents

Preface

Contents	page
List of abbreviations	VI
List of Tables	VIII
List of Figure	X
<u>Abstract</u>	1
Introduction	2
Depression	2
The neurobiology of depression	4
- Monoamine hypothesis	4
- Diasthesis-Stress hypothesis	6
- Two new neuroinflammatory theories of depression	7
Treatment of depression	9
1- Psychological treatment	10
2- Pharmacological treatment	10
Animal models of depression	13
1- Neurochemical models of depression	13
2- Ethological models of depression based on social stress	14
3- Ethological models of depression based on	
enviromental stress	16
4- Olfactory bulbectomy	17
5- Natural genetic models of depression	18
6- Operant response models	19
Depression and aggression	20
Pharmacological management of aggression	21
Methyl Palmitate	23
- Pharmacokinetics	24

	<u>Preface</u>
- Pharmacodynamics	25
- Toxicity	28
Aim of the work	29
<u>Materials and methods</u>	31
1- Materials	31
1.1. Laboratory animals	31
1.2. Drugs	31
1.3. Chemicals and solvents	32
2- Experimental design:	33
2.1. Models of depression	34
2.2. Parameters measured	35
3- Methods	38
3.1. Behavioral assessment	38
3.1.1. Open-field test (OFT)	38
3.1.2. Forced swimming test (FST)	41
3.1.3. Foot shock-induced aggression test (FIA)	44
3.1.4. Predatory aggression test	47
3.2. Biochemical and histological examination	48
3.2.1. Monoamine neurotransmitters analysis	49
3.2.2. Histopathological examination	50
3.2.3. Immunohistochemical assessment	50
4- Statistical analysis	52
<u>Results</u>	53
Effect of methyl palmitate in open field test	53
Effect of methyl palmitate in forced swimming test	65
Effect of methyl palmitate in footshock-induced aggression to	est 71

	<u>Preface</u>
Effect of methyl palmitate in predatory aggression test	77
Analysis of neurotransmitters using HPLC	80
Histopathological examination of the brain	86
Immunohistochemical examination of iNOS in the brain	98
Immunohistochemical examination of TNF- $lpha$ in the brain	107
<u>Discussion</u>	116
Summary and conclusion	130
<u>Recommendations</u>	136
<u>References</u>	137

List of abbreviations

Alpha 2	(α_2)
Central nervous system	(CNS)
Cerebrospinal fluid	(CSF)
Clonidine	(CLO)
Cyclooxygenase	(COX)
Dopamine	(DA)
Dopaminergic	(D)
Fluoxetine	(FLX)
Food and Drug Administration	(FDA)
Footshock-Induced Aggression Test	(FIA)
Forced swimming test	(FST)
Gama amino butyric acid	(GABA)
Half-life	$(t_{1/2})$
Hematoxylin and eosin stains	(H&E)
Histaminergic	(H)
Inducible nitric oxide synthase	(iNOS)
Interferon gamma	(IFNγ)
Interleukin-6	(IL-6)
Interleukin-1 beta	(IL-1β)
Isolation	(ISO)
Messenger Ribonucleic Acid	(mRNA)
Methyl palmitate	(MP)

	<u>Preface</u>
Monoamine oxidase	(MAO)
Monoamine oxidase inhibitors	(MAOIs)
National Institute for Clinical Excellence	(NICE)
Nitric oxide	(NO)
Nitric oxide synthase	(NOS)
Norepinephrine	(NE)
Nuclear factor kappa B	(NF-κB)
Nucleus accumbens	(NAc)
Open-Field Test	(OFT)
Phenylethylamine	(PEA)
Pro-inflammatory	(PI)
Prostaglandin E2	(PGE2)
Reversible inhibitors of MAO-A	(RIMAs)
Selective serotonin reuptake inhibitors	(SSRIs)
Serotonin (5-HydroxyTryptamine)	(5-HT)
Tail suspension test	(TST)
Transforming growth factor beta	(TGF-β)
Tricyclic antidepressants	(TCA)
Tumor necrosis factor alpha	(TNF-α)
Chemical structure	
Carbon tetrachloride	(CCl ₄)
Chloride	(Cl ⁻)

List of Tables

Table no.	Title	Page
1	Effect of methyl palmitate treatment on open field test in clonidine and isolation models of depression using male albino rats	58
2	Effect of methyl palmitate on forced swimming test in clonidine and isolation models of depression using male albino rats	67
3	Effect of methyl palmitate on foot shock- induced aggression test in clonidine and isolation models of depression using male albino rats	73
4	Effect of methyl palmitate on predatory aggression test in clonidine and isolation models of depression using male albino rats (rat vs mouse)	78
5	Effect of methyl palmitate on brain neurotransmitters in clonidine and isolation models of depression using male albino rats.	82

<u>Preface</u>

6	Effect of methyl palmitate on brain iNOS in the two depression models using male albino rats	100
7	Effect of methyl palmitate on brain TNF-α in the two depression models using male albino rats	109

List of Figures

Fig. no.	Title	Page
1.	Open Field Test Apparatus.	41
2.	Forced Swimming Test Apparatus.	44
3.	Footshock-Induced Aggression Test Apparatus	46
4.	Predatory Aggression Test.	48
	(5a): Effect of MP treatment on latency time of open field test in clonidine and isolation models of depression.	59
	(5b): Effect of MP treatment on ambulation frequency of open field test in clonidine and isolation models of depression.	60
5.	(5c): Effect of MP treatment on rearing frequency of open field test in clonidine and isolation models of depression.	61
3.	(5d): Effect of MP treatment on self-grooming behavior of open field test in clonidine and isolation models of depression.	62
	(5e): Effect of MP treatment on urination of open field test in clonidine and isolation models of depression.	63
	(5f): Effect of MP treatment on defecation of open field test in clonidine and isolation models of depression.	64

	(6a): Effect of MP treatment on climbing score of forced swimming test in clonidine and isolation models of depression.	68
6.	(6b): Effect of MP treatment on swimming score of forced swimming test in clonidine and isolation models of depression.	69
	(6c): Effect of MP treatment on immobility score of forced swimming test in clonidine and isolation models of depression.	70
	(7a): Effect of MP treatment on latency time to fight of foot shock-induced aggression test in clonidine and isolation models of depression	74
7.	(7b): Effect of MP treatment on jumping frequency of foot shock-induced aggression test in clonidine and isolation models of depression.	75
	(7c): Effect of MP treatment on rearing frequency of foot shock-induced aggression test in clonidine and isolation models of depression.	76
8.	Effect of MP treatment on muricide incidence of predatory aggression test in clonidine and isolation models of depression.	79

	(9a): Effect of MP treatment on brain NE in clonidine and isolation models of depression.	83
9.	(9b): Effect of MP treatment on brain DA in clonidine and isolation models of depression.	84
	(9c): Effect of MP treatment on brain 5-HT in clonidine and isolation models of depression.	85
10.	(10a): Normal structure of the meninges (m), cerebral cortex(cc), cerebrum (cr) in control-1 group. (10b): Normal structure of cerebellum in control-1 group. (10c): Normal structure of medulla oblongata in control-1 group.	88
11.	(11a): Focal gliosis (g) and focal haemorrhage (h) of cerebrum in CLO group. (11b): Intracellular oedema (o) and demyelination (d) of cerebrum in CLO group. (11c): Degeneration in the purkenji cells of cerebellum in CLO group. (11d): Neuronal degeneration of medulla oblongata in CLO group.	89

12.	(12a): Focal gliosis of cerebrum in CLO+FLX group.	90
	(12b): Degeneration in the purkenji cells of cerebellum in CLO+FLX group.	
	(12c): Neuronal degeneration of medulla oblongata in CLO+FLX group.	
13.	(13a): Focal gliosis of cerebrum in CLO+MP	91
	group. (13b): Normal structure of cerebellum in	
	CLO+MP group. (13c): Normal structure of medulla oblongata	
	in CLO+MP group.	
14.	(14a): Normal structure of meninges, cerebral cortex, cerebrum in MP-1 group.	92
	(14b): Normal structure of cerebellum in MP-	
	1 group. (14c): Normal structure of medulla oblongata	
	in MP-1 group.	
15.	(15a): Normal structure of meninges, cerebral cortex, cerebrum in Control-2 group.	93
	(15b): Normal structure of hippocampus in	
	Control-2 group.	