

Ain Shams University

Faculty of Commerce

Department of Statistics, Mathematics and Insurance

A Proposed Statistical Model to Study the factors affecting the Recurrence of an Individual's stroke by Myocardial Infarction with Application on Ain Shams University Hospitals

A thesis submitted in partial fulfillment of the requirement for the Master's Degree in Applied Statistics

Presented by

Abeer Ragheb Azazy Hassan

Faculty of Commerce, Ain Shams University

Under the Supervision of

Prof. Dr. Amr Ibrahim Abdelrahman Elatraby

Professor- Department of Statistics, Mathematics and Insurance Faculty of Commerce, Ain Shams University

Dr. Dina Hassan Abd elhady

Assistant Professor of Applied Statistics, Faculty of Commerce, Tanta

Title of Thesis

Approval Sheet

: A Proposed Statistical Model to

Study the factors affecting the

Recurrence of an Individual's stroke

by Myocardial Infarction with

Application on Ain Shams

University Hospitals.

Academic Degree : MBA in Applied Statistics.

Name of Student : Abeer Ragheb Azazy Hassan.

This thesis submitted in partial fulfillment of the requirement for

The Master's Degree in Applied Statistics has been approved by:

Examination Committee

1- Prof.Dr. Sohair Fahmy Hegazy

Professor- Department of Statistics Faculty of Commerce Tanta University

.....

2- Prof.Dr. Amr Ibrahim Abdelrahman Elatraby

Professor- Department of Statistics, Mathematics and Insurance Faculty of Commerce Ain Shams University

.....

3- Dr. Tolba Elsayed Zein Eldin

Associate Professor- Department of Statistics, Mathematics and Insurance Faculty of Commerce Ain Shams University

.....

Date of Dissertation Defense / / 2013 Approval Date / / 2013

Acknowledgments

After the help of Allah, many people have been a part of my gratitude; I feel deep gratitude; I feel deep gratitude to those people who have helped me: family, professors, and colleagues. **Prof. Amr Elatraby**, first, and foremost, has been the best advisor, I could have wished for, he was a great help for all his students. I am grateful to him for pushing me forward, Time after time. In the personal side, he did not hesitate to invite his students to become an extended part of his family. My gratitude also goes to **Dr. Dina Hassan Abd elhady** for her great supervision, help and advice.

Very grateful to **Prof. Sohair Hegazy** for her valuable comments and for her acceptance to share in the examination committee.

Many thanks to Associate Prof. Tolba Zein Eldin; for his valuable comments and acceptance to share in the examination committee.

Avery Special thanks are for **Dr. Osama Mohie Eldin** for his positive encouragement to achieve this study. Special thanks and appreciate for the **Dr. Mohammed Osama Anwar**; Al Alson High Institute for providing me the help for this research.

I would like to thank those closest to me, whose presence helped to complete my work. Most of all my family; and especially my father Ragheb Azazy, for his absolute confidence in me, and being always there; helping me to overcome all difficulties. Finally, I was lucky enough to have the help of my family. Life would not be the same without the help of my Husband Hesham Mostafa.

Contents

List Of Tables I	l
List Of Figures. II	
Summary IV	V
Chapter One: Introduction	
1.1 Introduction	l
1.2 Review of Literature	7
1.3 Importance of the Study	2
1.4 Objectives of the study	3
1.5 Thesis Outlines	4
Chapter Two: Categorical Data Analysis	
2.1 Introduction	6
2.2 Defining Categorical Variables	9
2.3 Types of Categorical Variables	0
2.4 Categorical Variables properties	2
2.5 Methods for Analyzing	3
Chapter Three: Binary Logistic Regression	
3.1 Introduction	8
3.2 Estimating and Interpretation of the Model	5
3.2.1 Maximum Likelihood Estimation	5
3.2.2 Interpretation the Model Coefficients	8
3.3 Assessing the Fit of the Model	1
3.3.1 Classification Tables	1
3.3.2 Hosmer-Lemeshow Statistic 4	3
3.3.3 Cross Validation Techniques	4
3.3.4 ROC Curve	7
3.3.5 Pseudo R-Squared	0
3.4 Testing for the Significance of the Coefficients	2

3.4.1 Wald Test	52
3.4.2 The Likelihood Ratio Test	53
3.5 Confidence Interval Estimation	55
Chapter Four: Linear Discriminant Analysis	
4.1 Introduction	57
4.2 Estimating and Interpretation Model	59
4.3 Assessing the Fit of the Model	63
4.3.1 The Eiegenvalues	63
4.3.2 Cross Validation and ROC Curve	65
4.4 Testing for the Significance of the Coefficients	66
4.4.1 Wilk's Lambda Test	66
Chapter Five: Applied Study	
5.1 Data of Binary Logistic Regression Analysis	68
5.1.1 Full Model Analysis	71
5.1.2 Stepwise Model Analysis	83
5.2 Data of Linear Discriminant Analysis	90
5.2.1 Full Model Analysis	90
5.2.2 Stepwise Model Analysis	97
5.3 A Comparison between Binary Logistic Model Regression	
Results and Linear Discriminant Analysis Results	101
5.4 Summary and Conclusions	102
5.5 Recommendations For Future Research	103
Appendices	
Appendix A: Binary Logistic Regression Analysis SPSS Output	104
Appendix B: Linear Discriminant Analysis SPSS Output	117
Appendix C: Second Myocardial Infarction Survey Questionnaire.	135
References	139
Arabic Summary	

List of Tables

Table	Subject	Page
Table (1)	Code sheet for the variables in the study	69
Table (2)	The estimated coefficients and its S.E	71
Table (3)	Odds Ratios and 95% Confidence Intervals for	
	Covariates	73
Table (4)	Classification table	75
Table (5)	Classification matrix	76
Table (6)	Pseudo R-Squared	78
Table (7)	Wald Test	79
Table (8)	Likelihood Ratio Test	81
Table (9)	Bootstrap for Variables in the Equation	82
Table (10)	The estimated coefficients and its S.E and odds	83
14010 (10)	ratios	
Table (11)	Classification table	85
Table (12)	Classification matrix	86
Table (13)	Pseudo R-Squared	88
Table (14)	Wald Test	88

Table	Subject	Page
Table (15)	Bootstrap for Variables in the Equation	89
Table (16)	The estimated Fisher's linear Discriminant functions coefficients.	91
Table (17)	Classification table	92
Table (18)	Classification matrix	93
Table (19)	Significance of the Discriminant function	95
Table (20)	Bootstrap for Variables in the Equation	95
Table (21)	Classification Function Coefficients	97
Table (22)	Classification table	97
Table (23)	Significance of the Discriminant function	100
Table (24)	Bootstrap for Variables in the Equation	100
Table (25)	A Comparison between Binary Logistic Regression Results and the Linear Discriminant Analysis Results	101

List of Figures

Figure	Subject	Page
Figure (1)	Second Myocardial Infarction: Etiology	6
Figure (2)	Classification or regression models according to the number of levels of the dependent variable	17
Figure (3)	The logistic relationship between dependent and independent variables	31
Figure (4)	ROC Curve	49
Figure (5)	Hypothetical frequency distributions of two populations showing percentage of cases incorrectly classified.	60
Figure (6)	Discriminant Analysis with two Groups	60
Figure (7)	ROC Curve, Logistic regression full model	78
Figure (8)	ROC Curve, Stepwise Binary Logistic regression	87