REPRODUCTIVE EFFICIENCY OF SHAMI GOATS IN SALT AFFECTED LANDS IN SOUTH SINAI

By

AHMED SOBHY ALI ALI EL-HAWY

B.Sc. Agric. Sc. (Animal Production), Al-Azhar University, Y... M.Sc. Agric. Sc. (Animal Physiology), Ain Shams University, Y...

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHYLOSOPHY

in Agricultural Science (Animal Physiology)

Animal Production Department Faculty of Agriculture Ain Shams University

REPRODUCTIVE EFFICIENCY OF SHAMI GOATS IN SALT AFFECTED LANDS IN SOUTH SINAI

By

AHMED SOBHY ALI ALI EL-HAWY

B.Sc. Agric. Sc. (Animal Production), Al-Azhar University, Y... M.Sc. Agric. Sc. (Animal Physiology), Ain Shams University, Y... V

Under the supervision of:

Dr. Essmat Bakry Abdalla

Prof. of Animal Physiology, Department of Animal Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Ahmed Mohamed El-Sherbiny

Associate Prof. of Animal Physiology, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Hamdi Abdel-Aziz Salem Gawish

Research Prof. of Animal Physiology, Department of Animal and Poultry Physiology, Desert Research Center

ABSTRACT

Ahmed Sobhy Ali Ali El-Hawy: Reproductive Efficiency of Shami Goats in Salt Affected Lands in South Sinai, Ph. D. Thesis, Department of Animal Production, Faculty of Agriculture, Ain Shams University,

The present study aimed to investigate the impact of salinity in both feed and drinking water on the physiological responses and production efficiency of Shami goats under saline conditions of south Sinai, Egypt. Forty eight adult female Shami goats were assigned randomly into equal four groups (for each). The first group (G) was served as control fed berseem (Trifolium alexandrnum) hay (BH) and drank fresh water (ppm), the second group (G) fed BH hay and drank saline water (ppm), the third group fed salt-tolerant plant (alfalfa) and drank fresh water (ppm) and the fourth group fed alfalfa and drank saline water (ppm).

Body weight changes, reproductive and productive traits were concerned. In addition, hematological parameters (PCV, Hb, RBCs, MCV, MCH, MCHC and WBCs) as well as biochemical parameters (TP,A, G, A/G ratio, AST, ALT, urea and creatinine) in addition to some serum minerals (Na, K, P, Ca, CL and Mg) were determined. Hormonal profile of E, P, T, T, and aldosterone were measured.

Results indicated that saline water has a higher total dissolved solids (ppm) compared to tape water (ppm). According to the roughage types, alfalfa contained higher crude protein, ether extract and nitrogen free extract and lower crude fiber and Ash compared to BH. Average DMI was found to be higher in alfalfa groups during early, mid, late pregnancy and lactation period compared to BH groups.

The present study showed that, conception rate was relatively better in alfalfa groups () than their partners () although differences were not significant. Likewise, twining rate had improved in alfalfa groups (, %) compared to control (, %) ones. Type of

roughage feeding (hay and/or alfalfa) had non- significant effect on birth weight but significant effect ($P \le$,) on weaning weight. In the same trend, type of feeding had significant ($P \le$,) effect on average daily gain of kids from birth to weaning. Milk yield negatively affected by saline water by about , while type of roughages did not affect milk production.

Plasma E levels were insignificantly higher during pregnancy in alfalfa groups compared to other groups due to that alfalfa contains estrogenically active substance. Our results indicated that, the diets containing salt-tolerant alfalfa did not affect the serum P concentration. Tri-iodothyronine (T) was insignificantly higher in BH groups than the other groups while concentration of thyroxine (T) was significantly higher in G compared to other groups. Aldosterone concentrations of does fed alfalfa were insignificantly lower than that of does fed berseem hay during pregnancy period.

Total protein (TP), albumin (A), globulin (G) and albumin / globulin ratio (A/G %) as well as ALT and AST of different experimental doe groups were within the normal ranges reported for sheep and goats. On the other hand, serum minerals were higher in alfalfa groups except phosphorus. These results indicated that, feeding salt-tolerant alfalfa and drinking saline well water resulted in insignificant increase in the serum Na and Ca levels and insignificant decrease in P concentration,

Keywords: Salt-Tolerant Plants, Saline water, Productive and Reproductive traits, Sami goats.

CONTENTS

Content	Page
ABBREVIATION	
\: INTRODUCTION	1
Y. REVIEW OF LITERATURE	٣
Y, \. Biosaline agriculture for livestock production	٣
Y,Y. Effect of salinity on feed intake	٤
۲,۳. Effect of salinity on water intake	٦
۲.٤. Effect of salinity on live body weight	٨
Y.o. Effect of salinity on milk yield and composition	١.
7.7. Effect of salinity on reproductive performance	۱۲
Y.Y. Effect of salinity on blood biochemical parameters	10
۲.۷.۱. Total proteins	10
Y.Y.Y. Liver enzymes (alanine transferase and aspirate	1 \
transferase)	
۲.۷.۳. Kidney function (blood urea and creatinine)	1 /
Y.Y. £. Effect on minerals	19
۲.٧.٤٠١. Sodium and Potassium	19
۲.٧.٤.۲. Phosphrus and Calcium	۲۱
۲,۷,٤.۳. Chloride and Magnesium	۲۱
۲٫۸. Blood picture	77
۲.۸.۱. Erythrocytes cell counts	77
۲,۸,۲. Leukocytes cell counts	77
۲.۸,۳. Packed cell volume	۲ ٤
۲.۸,٤. Hemoglobin concentration	70
۲٫۸,۰. Wintrobe indices: (mean corpuscular volume	, ۲٦
mean corpuscular hemoglobin and mean	1
corpuscular hemoglobin concentration	
۲.9. Effect of salinity on hormones	۲ ٧
۲.۹.1. Thyroid hormones	۲ ٧
$^{\gamma}.^{\eta}.^{\gamma}$. Estradiol- $^{\gamma}$ $^{\beta}$ and progesterone	۲ ۸
۲.۹.۳. Aldosterone	۲ ۹
": MATERIALS AND METHODS	٣١
۲.۱. Animals and Managements	٣١
T.Y. Measurements	٣1

Content	Page
T.Y.\. Reproductive traits	٣1
T,Y.Y. Productive traits	37
۳.۳. Milk samples	37
۳.٤. Blood samples	3
۳.°. Blood picture	3
۳.۰.۱. Erythrocytes and Leucocytes cell counts	3
T.o.Y. Packed cell volume	٣٣
۳.۰. Hemoglobin concentration	٣٤
۳.۰.٤. Wintrobe indices	٣٤
۲.٦. Hormonal profile	٣٤
T.V. Chemical composition of feeding staff	٣٤
۳.٤. Statistical procedure	30
4. RESULTS AND DISCUSSION	30
٤.١. Chemical analysis of tape and saline water	30
E.Y. Chemical and mineral composition of the experimental roughages and concentrate feed mixture	٣٦
٤.٣. Feed intake of Shami goats fed salt-tolerant alfalfa and drinking saline water	٣٧
٤.٤. Water intake of Shami goats fed salt-tolerant alfalfa and drinking saline water	٤٠
¿.o. reproductive performance of Shami goat fed salt- tolerant alfalfa and drinking saline water	٤٢
5.7. Milk yield and milk composition of Shami goat fed salt-tolerant alfalfa and drinking saline water	٤٤
¿, v. Body weight changes of Shami does and growth performance of kids fed salt-tolerant alfalfa and drinking saline water	٤٨
٤,٨. Hormonal profiles during estrous cycle and gestation	01
ξ , Λ , Λ . Estradiol- Λ Λ and progesterone of Shami goat fed salt-tolerant alfalfa and drinking saline water	01

Content	Page
٤,٨,٢. Tri-iodothyronine and Thyroxine of Shami goat fed	
salt-tolerant alfalfa and drinking saline water	0 2
٤,٨,٣. Aldosterone hormone of Shami goat fed salt-	00
tolerant alfalfa and drinking saline water	
۶٫۹. Biochemical parameters	04
٤,٩,١. Protein profile of Shami goat fed salt-tolerant	04
alfalfa and drinking saline water	
٤,٩,٢. Liver enzymes (alanine and aspartate	71
transferase) of Shami goat fed salt-tolerant alfalfa	
and drinking saline water	
٤,٩,٣. Kidney function (Urea and Creatinine	7 £
concentrations) of Shami goat fed salt-tolerant	
alfalfa and drinking saline water	
٤٠١٠. Blood electrolytes of Shami goat fed salt-	٦٦
tolerant alfalfa and drinking saline water	
ار براد. Hematological parameters	77
٤,١١,١. Hemoglobin concentration of Shami goat fed	77
salt-tolerant alfalfa and drinking saline water	
٤,١١,٢. Packed cell volume of Shami goat fed salt-	٧ ٦
tolerant alfalfa and drinking saline water	
جرا المجارة. Red blood corpuscles count of Shami goat fed	Y A
salt-tolerant alfalfa and drinking saline water	
٤,١١,٤. Wintrobe indices of Shami goat fed salt-	۸.
tolerant alfalfa and drinking saline water	
٤,١١,٥. White blood corpuscles count of Shami goat	٨٣
fed salt-tolerant alfalfa and drinking saline water	
•. SUMMARY AND CONCLUSION	٨٩
7. REFERENCES	98
Arabic summary	

LIST OF FIGURES

Figure		Page
`	Total dry matter intake (kg/h/day) during different physiological stages	٣٩
۲	Water intake during different physiological stages	٤١
٣	Milk yield of different goat groups over \Y weeks lactation period	٤٧
٤	Milk yield during lactation stages of experimental groups	٤٨
0	EY concentration (pg/ml) of different groups during gestation period	٥٢
٦	P [£] concentration (pg/ml) of different groups during gestation period.	٥٢
٧	Tr concentration during gestation length of experimental groups	0 {
٨	Ts concentration during gestation length of experimental groups	00
٩	Aldosterone concentration during gestation length of experimental groups	٥٦
١.	Total protein concentration (g/dl) of different experimental groups	٥٨
11	Albumin concentration (g/dl) of different experimental groups	٥٩
17	Globulin concentration (g/dl) of different experimental groups	٦,

١٣	Albumin/Globulin ratio (%) of different experimental groups	71
Figure		Page
١٤	Alanine transferase (I/U) concentration of different experimental groups	٦٣
10	Aspartat aminotransferase (I/U) concentration of different experimental groups	74
١٦	Blood urea nitrogen (gm/dl) concentration of different experimental groups	70
1 \	Creatinine (gm/dl) concentration of different experimental groups	٦٦
١٨	Magnesium concentration (mg/dl) of different experimental groups	٦٨
19	Chloride concentration (mg/dl) of different experimental groups	٦٩
۲.	Calcium concentration (mg/dl) of different experimental groups	٦9
71	Potassium concentration (mEq/l) of different experimental groups	٧١
77	Sodium concentration (mg/dl) of different experimental groups	٧١
74	Phosphorus concentration (mg/dl) of different experimental groups	٧٢
7 £	Hemoglobin concentration (g/\cdot\cdot\cdot ml) of different experimental groups during gestation stages	٧٥
70	Packed cell volume (× 1.7/CMM) of different experimental groups during	YY

gestation s	stages
-------------	--------

	_	
77	Red blood cells (×) · \(\cdot / CMM \) of different experimental groups during gestation stages	٧٩
7 7	Mean corpuscular volume (fl) of different experimental groups during gestation stages	٨١
۲۸	Mean corpuscular hemoglobin (pgm) of different experimental groups during gestation stages	٨٢
79	Mean corpuscular hemoglobin concentration (g/dl) of different experimental groups during gestation stages	۸۳
٣.	Wight blood cells (× 1.*/CMM) of different experimental groups during gestation stages	Λc

LIST OF TABLES

Tal	ole	Page
۱ ۲	Chemical composition of tape and saline water Proximate chemical analysis of different experimental roughages and concentrate feed	٣٦ ٣٧
	mixture (on \ / DM basis)	
٣	Effect of salt tolerant plants and drinking water on TDMI (g/h/d) of different experimental groups	٣٨
٤	Effect of salt tolerant plants and drinking water on water intake (l/h/d) of different experimental	٤٠
0	groups Reproductive performance for different studies goat groups	٤٣
٦	Effect of salt tolerant and drinking water on milk yield and composition	٤٦
٧	Body weight changes (kg) of the different	٤٩
٨	experimental groups during gestation period Effect of salt tolerant plants and drinking water on kids body weight	٥,
٩	Effect of salt tolerant plants and drinking water on total proteins, albumin, globulin and A/G ratio	٥٨
١.	Effect of salt tolerant plants and drinking water on liver enzymes	٦٢
11	Effect of salt tolerant plants and drinking water on kidney function	٦٤
١٢	Effect of salt tolerant plants and drinking water on blood electrolytes	77
۱۳	Least square means± SE of the hematological parameters for the experimental Shami doe goats	٧٦

Abbreviation

Abbreviation Description

STP Salt-tolerant plants
BH Berseem hay
At Atriplex
TP Total protein
A Albumin
G Globulin

A/G% Albumin/Globulin ratio
RBCs Erythrocytes cell count
WBCs Leukocytes cell counts
PCV Packed cell volume

Hb Hemoglobin

Т٣

MCV Mean corpuscular volume
MCH Mean corpuscular hemoglobin
MCHC Mean corpuscular hemoglobin

concentration Triiodothyronine

Tέ Thyroxine
EY Estradiol-۱۷β
Pέ Progesterone
A.L.S. Average litter size
ALT Alanine transferase
AST Aspartate transferase
Ec Electric conductivity

TDS Total dissolved solids SNF Solid not fat Total solids

ACNOWLEDGMENT

First of all, thanks to **ALLAH**, the most gracious, beneficent and merciful for his induced approval to complete goals and make them possible.

The author heartily wishes to express his sincere and deepest appreciation to **Dr. Esmat Bakri Abdalla**, Professor of Animal Physiology, Animal Production Department, Faculty of Agriculture, Ain Shams University for his close supervision, encouragement, constructive criticism, valuable advices and great help in writing and preparation of the manuscript.

Deep thanks are due to **Dr. Hamdi Abdel-Aziz Gawish,** Research Professor of Animal Physiology, Animal and Poultry Physiology Department, Desert Research Center for his close supervision, designing the work plan, providing facilities, keen follow up of the work and helping in writing the manuscript.

The author wishes to express his sincere and deepest appreciation to **Dr. Ahmed Mohammed El-Sherbiny,** Associate Professor of Animal Physiology, Animal Production Department, Faculty of Agriculture, Ain Shams University for his great help during carrying out the present work, guidance and valuable discussion.

Cordial thanks are also extended to **Dr. Hasan El-Shaeer and Dr. Tarek Abdel-Fattah** for providing facilities and their helps in the progress of this work.

I am also indebted to **Dr. Abdel-Hadi Farok**, Associate Professsor of Animal Physiology, Animal Production Department, Faculty of Agriculture, Ain Shams University for sharing proposing during the period of his supervision.

I am very grateful to Dr. Yosry Shaker, Dr. Ahmed Lotfy, Dr. Ali Saber, Dr Nagi Hamed, Dr. Ahmed Askar, Dr. Hasanin Saad, Dr. Khaled El-Bahrawy, Dr. Sherif Rateb, Dr. Marwa Khalifa, Dr. Salah Bakr, Dr. Ahmed Khrishi, Dr. Moharram, Dr. Ghandour. Dr. Khamis, Dr. Ibrahim Samir and Dr. Bahaa for their encouragement and helps in progress of this work.

Special thanks are due to the workers of Ras sedr Research Station, staff of Department of Animal Physiology and my friends for the facilities and kind help during the experimental work.

Finally, I want to express special gratefulness to my late father. My deepest thanks to my mother, my brothers (Mohamed and Osama), my sisters, my wife, my lovely daughters (Nourhan and Ashrakat) and my lovely twines (Mohamed and Osama) for their encouragement and moral support during all my life.

1. INTRODUCTION

Populations in the developing countries are growing so quickly that the arable lands and the available fresh water are unable to sustain them. It was estimated from the various available data that globally the world is losing at least r ha of arable land every minute because of soil salinity (Anon, Y...X). In Egypt, about 40% of the land is desert, where the soil is sandy and most of the available ground-water is too saline to raise and sustain conventional crops (Ashour et al., 199V). On the other hand, shortage of feed resources is a common characteristic in arid and semi-arid regions and is considered the main constraint to improving livestock productivity. Therefore, intensive efforts have been directed to find alternative feed resources from saline-tolerant plants (El-Shaer, Y...X).

The vegetative yields of halophytes and other salt-tolerant plants species could have great potentialities particularly as sources of livestock fodders. The fodder quality of these plants depends on a combination of climatic, soil, and plant factors. However, the value of certain salt-tolerant forage crops has been recognized by their incorporation in the rangelands improvement programs in many salt-affected regions throughout the world (**Anon**, **Y** • • **9**).

Although economic consideration of halophytes and other salttolerant plants is just beginning, they are receiving increased attention particularly in arid regions where salinity problems are very crucial. On the other side, the combination of salt in feed and water is of critical importance. When the high salt intake comes from feed alone, and there is an unlimited supply of freshwater, the animal can cope by increasing water intake and therefore increasing the salt excreting capacity of the