A study on macrolide and lincosamide resistance in pathogenic Gram positive cocci

Thesis

Submitted in partial fulfillment for the requirements of the Master degree of Science in Microbiology

 $\mathbf{B}\mathbf{y}$

Doha Mohamed Ashour Mahmoud

(B.Sc. Microbiology/Chemistry, 2010)

Supervisors

Prof. Dr. Mohamed Khaled Ibrahim

Professor of Bacteriology

Vice dean of education and student affairs

Faculty of Science, Ain Shams University

Prof. Dr. Mona Mohiedden Abdelhalim

Professor of Clinical and Chemical Pathology

Clinical and Chemical Pathology Department

Faculty of Medicine, Cairo University

Dr. Sahar Tolba Mohamed

Assistant Professor of Microbiology

Microbiology Department

Faculty of Science, Ain Shams University

A study on macrolide and lincosamide resistance in pathogenic Gram positive cocci

Thesis

Submitted in partial fulfillment for the requirements of the Master degree of Science in Microbiology

By

Doha Mohamed Ashour Mahmoud

(B.Sc. Microbiology/Chemistry, 2010)

Department of Microbiology
Faculty of Science
Ain Shams University
2017

Acknowledgment

First of all, I would like to express my sincerest gratitude and thanks to Allah who gives me patience for any success in life.

I would like to express my sincere gratitude and appreciation to Prof. Dr. Mohamed Khaled Ibrahim, Professor of Bacteriology, Faculty of Science, Ain Shams University, for his supervision, continuous guidance and great support throughout this work.

My cardinal gratitude to Prof. Dr. Mona Mohiedden Abdelhalim, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for her sincere guidance and great help in this work.

I am also profoundly grateful to Dr. Sahar Tolba Mohamed, Assistant Professor of Microbiology, Faculty of Science, Ain Shams University, for her sincere guidance, valuable advice and continuous encouragement in this work.

My deep thanks to Microbiology Department, Faculty of Science, Ain Shams University.

Special thanks to the microbiology laboratory of CUSPH for great help and support all over the practical steps of this work.

My deepest gratitude to my family, especially my mother for their support and encouragement throughout my life.

CONTENTS

Subjects	Page
List of tables	IV
List of figures	VI
Abbreviations	VIII
1. Introduction	1
2. Review of literature	3
2.1. Antibiotic resistance	3
2.2. Gram positive pathogenic cocci	6
2.2.1. Staphylococcus sp.	7
2.2.1.1. Classification of staphylococci	7
2.2.1.2. Characteristics of staphylococci	7
2.2.1.3. Staphylococcus aureus	8
2.2.1.3.1. Epidemiology	8
2.2.1.3.2. Virulence factors of S. aureus and	8
pathogenesis	
2.2.1.4. Coagulase negative staphylococci (CoNS)	11
2.2.1.4.1. Epidemiology	11
2.2.1.4.2. Virulence factors and disease	12
2.2.2. Streptococcus sp.	13
2.2.2.1. Classification of Streptococcus	13
2.2.2.2. Characteristics of <i>Streptococcus</i>	13
2.2.2.3. Streptococcus pneumoniae	13
2.2.2.3.1. Epidemiology	14
2.2.2.3.2. Virulence factors and disease	14
2.3. Antibiotic resistance in Gram positive	15
pathogenic cocci	
2.3.1. β-lactam antibiotics	15
2.3.1.1. Methicillin resistance	16
2.3.2. Glycopeptide antibiotics	17
2.3.2.1. Vancomycin resistance	17
2.3.3. Sulphonamides - Trimethoprim	18
2.3.3.1. Mechanism of resistance	19
2.3.4. Quinolones	20

2.3.4.1. Quinolone resistance	21
2.3.5. Aminoglycosides	22
2.3.5.1. Aminoglycoside resistance	23
2.3.6. Tetracyclines	23
2.3.6.1. Tetracycline resistance	24
2.4. Macrolide and lincosamide antibiotics	25
2.4.1. Chemical structure of macrolides and	25
lincosamides	
2.4.2. Mode of action of macrolides and	28
lincosamides	
2.4.3. Mechanism of action	29
2.4.4. Macrolide and lincosamide resistance	30
2.4.4.1. Target site modification by methylation or	30
mutation	
2.4.4.2. Efflux of the antibiotics	33
2.4.4.3. Drug inactivation	35
2.4.4.4. Transmission of resistance genes	36
2.4.4.5. Regulation of resistance genes	37
3. Materials & Methods	42
3.1. Clinical samples	42
3.2. Isolation of bacteria from clinical samples	42
3.3. Identification of bacterial isolates	42
3.3.1. Species identification of staphylococci	43
3.3.1.1. Coagulase production (Coagulase test)	43
3.3.1.2. Novobiocin resistance	43
3.3.1.3. Polymyxin B resistance	43
3.3.1.4. Ornithine decarboxylase activity (Ornithine	44
decarboxylase test)	
3.3.1.5. DNase test	44
3.3.1.6. Urease test	45
3.3.1.7. Mannitol fermentation (Acid production)	45
3.3.2. Species identification of streptococci	47
3.3.2.1. Hemolytic reaction	47
3.3.2.2. Optochin test	47
3.4. Media used in the study	47

3.5. Antibiotic susceptibility test	49
3.6. Determination of MLS_B resistance phenotypes	52
(double disk diffusion – D zone test)	
3.7. Determination of minimal inhibitory	53
concentration (MIC test)	
3.8. DNA extraction from bacteria	54
3.9. Polymerase Chain Reaction (PCR)	54
3.9.1. PCR primers	54
3.9.2. Multiplex PCR	54
3.9.2.1. Staphylococci	54
3.9.2.2. Streptococci	55
3.10. Electrophoresis of PCR product	55
3.10.1. Buffers and reagents and biochemicals	56
3.11. Statistics	58
4. Results	59
4.1. Collection of samples	59
4.2. Identification of bacterial isolates	59
4.3. Antibiotic susceptibility pattern	63
4.4. Macrolide lincosamide streptogramin B (MLS _B	67
) resistance phenotype	
4.5. The relation between methicillin resistance and	70
susceptibility profile to erythromycin and	
clindamycin	
4.6. Minimal inhibitory concentration (MIC)	72
4.7. Polymerase Chain Reaction (PCR)	74
4.8. Correlation between MLS _B resistance	79
phenotype and genotype	
5. Discussion	82
Summary	95
References	98
Arabic summary	

List of Tables

Subject	Page
Table (A): Selected Staphylococcus aureus	10
virulence factors	l
Table (1): Key tests for identification of the most	46
clinically significant Staphylococcus species	l
Table (2): Media used in isolation, identification, antibiotic susceptibility and MIC of the isolates	48
Table (3): Zone diameter ranges of each antibiotic	50
used in this study for staphylococcal isolates	
Table (4): Zone diameter ranges of each antibiotic	51
used in the study for Streptococcus pneumoniae	
isolates	l
Table (5): MIC interpretive criteria	53
Table (6): Primers used in the multiplex PCR	57
assay for the detection of macrolide resistance	
genes in staphylococcal isolates	1
Table (7): Primers used in the multiplex PCR	57
assay for the detection of macrolide resistance	
genes in streptococcal isolates	
Table (8): Distribution of identified Gram positive	61
cocci isolates in this study	
Table (9): Identification tests for S. aureus and	62
CoNS	
Table (10): Distribution of isolated species among	62
different clinical samples	
Table (11): Percentage of the susceptibility to	66
various antibiotics used in the study among	
different species of Staphylococcus	
Table (12): Percentage of the susceptibility to	66
various antibiotics among Streptococcus	
pneumoniae	

Table (13) : MLS _B resistance phenotype	68
designation among different species of	
Staphylococcus and Streptococcus spp.	
Table (14): Susceptibility profile to erythromycin	71
and clindamycin of susceptible and methicillin-	
resistant S. aureus and CoNS	
Table (15): MIC for clindamycin and	72
erythromycin of the selected staphylococcal and	
streptococcal isolates	
Table (16): Distribution of the studied resistance	74
genes among isolated staphylococci	
Table (17): Distribution of the studied resistance	74
genes among isolated Str. pneumoniae	
Table (18): Distribution of the studied resistance	75
genes among isolated CoNS	
Table (19): Correlation between the studied	80
resistance genes and MLS _B resistance phenotypes	
among staphylococcal species	
Table (20): Correlation between the studied	81
resistance genes and MLS _B resistance phenotypes	
among Streptococcus pneumoniae	

List of Figures &Photos

Subject	Page
Figure (A): Acquisition of Antibiotic Resistance	5
Figure (B): Sulphonamides and trimethoprim	19
inhibit distinct steps in folate metabolism	
Figure (C): Chemical structure of erythromycin A	26
Figure (D): The chemical structure of	27
clarithromycin, azithromycin, tylosin and	
telithromycin	
Figure (E): Chemical structures of lincomycin and	28
clindamycin	
Figure (F): Translational attenuation of <i>erm</i> C gene	39
expression	
Figure (G): Transcriptional attenuation of erm (K)	41
Figure (1): Distribution of identified Gram positive	61
cocci isolates in this study	
Photo (2): Representative MIC test for vancomycin	63
Photo (3): Representative D-zone test for inducible	69
clindamycin resistance	
Figure (4): The percentage of the distribution of	69
MLS _B resistance phenotypes between the isolates	
Figure (5): The relation between MR and MLS_B	71
phenotypes in the staphylococcal isolates	
Photo (6): Representative MIC test. A: MIC for	73
clindamycin and B: MIC for erythromycin	
Photo (7): Representative MIC test for clindamycin	73
Figure (8): The distribution of resistance genes	76
among S. aureus and CoNS	
Figure (9): Frequency of resistance genes in	77
Streptococcus pneumoniae isolates	

Photo (10): PCR amplification of <i>erm</i> C gene (190bp). Lanes 1-8 are Staphylococci isolates showing positive <i>erm</i> C, L is 100 bp DNA ladder.	77
Photo (11): PCR amplification of <i>msrA</i> gene (163 bp). Lanes 1-10 are staphylococci isolates showing positive <i>msrA</i> , L is 100 bp DNA ladder.	78
Photo (12): PCR amplification of <i>ermA</i> (590bp), <i>mefA/E</i> (317bp). L is 100 bp DNA ladder.	78

List of Abbreviations

A: Adenine

AAC: Aminoglycoside acetyltransferases

ABC: ATP-binding cassette

Ab^r: Antibiotic resistant

ACME: Arginine catabolic mobile element

AIDS: Acquired immune deficiency syndrome

ANT: Aminoglycoside nucleotidyltransferases

APH: Aminoglycoside phosphotransferases

CA-MRSA: Community acquired methicillin resistant

Staphylococcus aureus

CD: Clindamycin

CDC: Centers for Disease Control and Prevention

Cfr: PhLOPSa resistance gene

CHIPS: Chemotaxis inhibitory protein of staphylococci

CIP: Ciprofloxacin

CLSI: Clinical and Laboratory Standards Institute

cMLS_B: Constitutive macrolide lincosamide streptogramin B resistance phenotype

CoNS: Coagulase-negative staphylococci