

UTILIZATION OF BIO-PRECIPITATION TO IMPROVE THE PHYSICO-MECHANICAL PROPERTIES OF BUILDING MATERIALS

A thesis Presented by

Hamdy Abdel Aziz Ahmed Abdel Gawwad

(M.Sc. in Chemistry)

For

The fulfillment of the Degree of Ph.D. in Chemistry

Submitted to

Chemistry Department

Faculty of Science

Ain Shams University

2013

Ain Shams University Faculty of Science Chemistry Department

UTILIZATION OF BIO-PRECIPITATION TO IMPROVE THE PHYSICO-MECHANICAL PROPERTIES OF BUILDING MATERIALS

A thesis Presented by

Hamdy Abdel Aziz Ahmed Abdel Gawwad

(M.Sc. in Chemistry)

Thesis For
Ph.D Degree of Science in Physical and Inorganic
Chemistry, under supervision of

Prof. Dr. Salah Abdel-Ghani Abo-El-Enein (D.Sc.)
Prof. Dr. Ali Hassan Ali Ahmed
Prof. Dr. Fatma Nabeeh Talkhan

Head of Department

Prof. Dr. Maged Shafik Antonious

ACKNOLEDGMENT

Firstly and foremost, my deep gratefulness, Thankful and indebtedness as to merciful "**ALLAH**" who give me everything I have in the ability and patience for accomplishing this work.

Thanks to our prophet, **MUHAMED** (**PBUH**); teach me the good morality. My leader to the right way, and my exhorter to the excellence direction in our present life and in hereafter. Gives me the integrity instructions.

Foremost, I would like to express my deep and sincere thanking to **Prof. Dr. Salah. Abdel-Ghani Abo-El-Enein** (**D.Sc.**) Professor of Physical Chemistry and Building Materials, Faculty of Science, Ain Shams University, for suggesting the subject of this study, useful guidance, continuous supervision and his great help in the interpretation of the results.

Also I would like to thanks **Prof. Dr. Ali Hassan Ali Ahmed** Professor of physical Chemistry and Building Materials, Housing and Building National Research Center for his kind, help, guidance and continuous supervision during course of this investigation.

Special thanks and appreciation are extended to **Prof**. **Dr. Fatma Nabeeh Talkhan** Professor of Applied Microbial Genetics - National Research Center for supported me by bacterial strain, help, guidance and expert supervision.

Final thanks to express my deep and sincere to Professor **Ali Mohammed Sharara.** Head of Raw Research Institute, Housing and Building National Research center.

I send special thanks and dedicate this work to my Parents, my Wife and my Family for the gift of years of support, tolerance and patience; so I ask my God to aid me to restore even some of them efforts.

Hamdy .A . Abdel Gawwad

CONTENTS

	ODUCTION AND LITERATURE IEW
1.1	INTRODUCTION
1.1.1	Mechanism of microbial induced calcite
	precipitation
1.1.1.1	Biologically controlled mineralization
1.1.1.2	Biologically induced mineralization
1.2	LITERATURE REVIEW
1.2.1	Microbially induced carbonate
	precipitation (MICP)
1.2.2	Bio-cementation (Consolidation of sand)
1.2.3	Remediation of cracks in concrete
1.2.4	Improvement physico-mechanical
	properties of cementitious material
1.2.5	Protect stone and cementitious material
1.2.6	Self-healing concrete
	OBJECT OF INVESTIGATION
2. M	ATERIALS AND METHODS OF
IN	NVESTIGATION
2.1	Materials
2.2	Cultivation Condition
2.2.1	Consolidation of sand
2.2.2	Bio-mortar
2.3	Preparation of Cement Pastes
2.3.1	Biocementation (consolidation of sand)
2.3.2	Preparation of bio-mortar
2.3.3	Mortar crack remediation
2.3.4	Surface protection
2.4	Curing
2.5	Methods of Investigation
2.5.1	Stopping of the hydration
2.5.2	Water absorption
2.5.2.1	Bio-mortar and bio-cement
2.5.2.2	Protected and unprotected cement
	pastes

2.5.3	Bulk density	48
2.5.4		49
2.5.5	<u> </u>	49
2.5.6	-	50
2.5.7	-	50
2.5.8		51
2.5.8		51
3. RE	SULTS AND DISCUSSION 5	53
3.1	Consolidation of Sand (Biocementation)	53
3.1.1	Effect bacterial concentration and number	
	of treatments on sand consolidation	54
3.1.1.1	Water absorption	54
3.1.1.2		58
3.1.1.3	Compressive strength	59
3.1.1.4		63
3.1.1.5	Thermogravimetric analysis (TGA)	64
3.1.1.6	Differential thermal analysis (DTA)	66
3.1.1.7	Petrographic microscopy	67
3.1.1.8	Scanning electron microscopy (SEM) •	69
3.1.2	Effect of urea and calcium chloride	
		71
3.1.2.1	r	71
3.1.2.2	3	72
3.1.2.3		75
3.1.3	1	78
3.1.3.1	1	79
3.1.3.2	3	81
3.1.3.3	Compressive strength	83
3.1.4	Effect of calcium source	85
3.1.4.1	Water absorption	86
3.1.4.2	Bulk density	88
3.1.4.3	Compressive strength	89
3.1.4.4	3	92
3.1.4.5	Thermogravimetric analysis (TGA	94
3.1.4.6	Differential thermal analysis (DTA)	94
3.1.4.7	Scanning electron microscopy (SEM)	98

3.2	Mortar Crack Remediation	101
3.2.1	Compressive strength	103
3.3	Improvement Physico-Mechanical	
	Properties of Cement Mortar	105
3.3.1	Water absorption	105
3.3.2	Compressive strength	108
3.3.3	Scanning electron microscopy (SEM)	112
3.4	Durability of Cement Mortar Mixed with	
	and without Bacterial Cells Against	
	MgSO ₄ Attack	114
3.4.1	Compressive strength	116
3.4.2	Differential Thermal Analysis (DTA)	119
3.4.3	Scanning electron microscopy (SEM)	124
3.5	Surface Protection of Cement Pastes	129
3.5.1	Water absorption and sorptivity coefficient.	131
3.5.2	X-ray diffraction (XRD)	137
3.5.3	Differential thermal analysis (DTA)	140
3.5.4	Scanning electron microscopy (SEM)	142
3.6	Durability of Surface Protected Cement	
	Pastes by Microbial Calcite Precipitation	
	Against MgCl ₂ Attack	146
3.6.1	Compressive strength	147
3.6.2	Differential thermal analysis (DTA)	150
3.6.3	Scanning electron microscopy (SEM)	152
4. S	SUMMERY AND CONCLUSIONS	154
	FERENCES	162
	ABIC SUMMARY	

TABLES

Table (1)	Chemical composition of materials, wt %	41
Table (2)	Water absorption and reduction percentage of water absorption of control sand and sand consolidated by mixing with bacterial cell concentrations (0.5, 1.0, and 1.5 OD ₆₀₀) and 1.0 M equimolar of urea / CaCl ₂ from 1 st to 4 th treatments	
Table (3)	Bulk density of control sand and sand consolidated by mixing with bacterial cell concentrations (0.5, 1.0, and 1.5 OD ₆₀₀) and 1.0 M equimolar of urea / CaCl ₂ from 1 st to 4 th treatments	59
Table (4)	Compressive strength of sand consolidated by mixing with bacterial cell concentrations (0.5, 1.0, and 1.5 OD ₆₀₀) and 1.0 M equimolar of urea / CaCl ₂ from 1 st to 4 th treatments	61
Table (5)	Water absorption of sand consolidated by mixing with bacterial cell concentrations of 1.0 OD ₆₀₀ and 0.25, 0.5, 1.0, 1.5 and 2.0 M equimolar of urea / CaCl ₂ at 4 th treatment	72
Table (6)	Bulk density of sand consolidated by mixing with bacterial cells concentration of 1OD and 0.25, 0.5, 1.0, 1.5 and 2.0M equimolar of urea / CaCl ₂ at 4 th treatment.	74
Table (7)	Compressive strength of sand consolidated by mixing with bacterial cells concentration of $1.0~\mathrm{OD_{600}}$ and $0.25,0.5,1.0,1.5$ and $2.0M$ equimolar of urea / $\mathrm{CaCl_2}$ at 4^{th} treatment	76

Table (8)	Water absorption of control sand with	
	different grain sizes and consolidated	
	sand by mixing with bacterial cells	
	concentration of 1.0 OD ₆₀₀ and 1.0 M	
	equimolar of urea / CaCl ₂ at 4 th	
	treatment	79
Table (9)	Bulk density of control sand with	1)
Table (7)	different grain sizes and consolidated	
	sand by mixing with bacterial cells	
	•	
	concentration of 1.0 OD_{600} and 1.0 M	
	equimolar of urea / CaCl ₂ after four	0.1
7 11 (40)	treatments	81
Table (10)	Compressive strength of control sand	
	with different grain sizes and	
	consolidated sand by mixing with	
	bacterial cells concentration of 1.0 OD_{600}	
	and 1.0 M equimolar of urea / CaCl ₂	
	after four treatments	83
Table (11)	Water absorption of sand consolidated	
	by mixing with bacterial cells	
	concentration of 1.0 OD ₆₀₀ and 1.0 M	
	equimolar of urea / CaCl ₂ ,	
	Ca(CH ₃ COO) ₂ or Ca(NO ₃) ₂ after four	
	treatments	86
Table (12)		
` ,	mixing with bacterial cells concentration	
	of $1.0~\mathrm{OD_{600}}$ and $1.0~\mathrm{M}$ equimolar of	
	urea / $CaCl_2$, $Ca(CH_3COO)_2$ or	
	$Ca(NO_3)_2$ after four treatments	88
Table (13)		
14610 (10)	consolidated by mixing with bacterial	
	cells concentration of 1.0 OD_{600} and 1.0	
	M equimolar of urea / CaCl ₂ ,	
	Ca(CH ₃ COO) ₂ or Ca(NO ₃) ₂ after four	
	treatments	90
Table (14)	Compressive strength of mortar sample	70
1 4 1 1 1 (1 T)	Compressive such gui of mortal sample	

	(C-0: control, C-1: untreated cracked	
	mortar and C-2: treated cracked	
	mortar	104
Table (15)	±	
	or without bacterial cells up to 28	
	days	106
Table (16)	Compressive strength of cement mortar	
	with and without bacterial cells up to 28	
	days	109
Table (17)	Compressive strength of control cement	
	mortar (CM) mixed with 1.0 OD_{600} of	
	bacterial cells (CM + 1.0 OD_{600}) after	
	immersion immersed in 5 % magnesium	
T. 11 (40)	sulfate and tapwater up to 12 months	117
Table (18)	Water absorption of control and coated	
	sample with bacterial cells and 0.17,	
	0.33 and 0.66 M equimolar of urea /	122
T 11 (10)	CaCl ₂	132
Table (19)	Water absorption of control and coated	
	samples with bacterial cells and 0.17,	
	0.33 and 0.66 M equimolar of urea /	134
Table (20)	Ca(CH ₃ COO) ₂	134
Table (20)	Sorptivity coefficient (k) control and coated samples with bacterial cells and	
	0.33M equimolar of urea / CaCl ₂ and	
	urea / $Ca(CH_3COO)_2$	136
Table (21)	Compressive strength values of control	130
1 abic (21)	cement pastes (CCP) and protected	
	surface of cement paste (PCP) by	
	microbial calcite precipitation then	
	immersed in 3 % magnesium chloride or	
	tap water up to 12 months	148

ABSTRACT

The microbes can hydrolyze urea by urease enzyme to produce ammonium as well as carbonate ions and in the presence of calcium ions. This will result in calcium precipitation; this called carbonate process "biocalcification" or microbial induced calcite precipitation (MICP). This technology is environmentally friendly. In this work, the phenomena of microbial induced calcite precipitation was applied for sand consolidation, mortar crack remediation, improvement physico-mechanical properties of cement mortars and its resistivity to 5% magnesium sulfate solution as well as the surface protection of cement pastes and its resistivity to 3 % magnesium chloride solution up to one year. It was found that, the compressive strength and bulk density of consolidated sand by bacterial cells and urea/calcium chloride increase with bacterial cells up to 1.5 OD₆₀₀, urea / calcium chloride concentration up to 1.5 M, up to 4 treatments (4 days) and decreasing particle size of sand grains up to 150-300 µm. Meanwhile, the water absorption values decrease. Calcium chloride was found to be the better calcium source which gives higher physicomechanical properties than those of calcium acetate or calcium nitrate. The compressive strength of untreated crack mortar was lower than that of the control sample by 43 % which improved after remediation leading to a lowering in strength of 10 % than that of the control sample. Also, the compressive strength of cement mortar mixed with bacterial cells increases with bacterial cell concentration up to 1.0 OD_{600} then decreases at 1.5 OD_{600} . Meanwhile, the water absorption values decrease with bacterial cells concentration up to 1.5 OD_{600} . The water absorption values of protected cement pastes by microbial calcite precipitation were lower than those of the unprotected cement pastes. The cement mortar mixed with bacterial cells was more resistive against magnesium sulfate than the control. On the other hand, the protected cement pastes by microbial calcite precipitation were more resistive against magnesium chloride than the unprotected cement pastes. The distinct phases precipitated by bacterial cells were identified and characterized by XRD, DTA, TGA, petrography and SEM techniques.

CHAPTER (1) INTRODUCTION AND LITERATURE REVIEW

1.1. INTRODUCTION

Microbial communities and the mineral world are dancing a 'geobiological tango' (Nealson & Ghiorse, 2001). Dynamics of microbe—mineral interactions are important in carbonate production in both marine and non-marine environments. There is increasing evidence that many processes are traditionally considered as purely physico-chemical, such as carbonate mud production during whiting events (Robbins & Blackwelder, 1992).

Calcite is one of the most common and wide spread minerals on Earth constituting 4 wt% of the Earth's crust. It is naturally found in extensive sedimentary rock masses, as limestone, marble and calcareous sandstone in marine, fresh water and terrestrial environments (Hammes and Vertraete, 2002, Klein and Hurlbut, 1999).

Microorganisms and microbially mediated mineralization processes are active in almost every environment on earth and possibly in extraterrestrial

systems. In natural environments, chemical CaCO₃ precipitation $(Ca^{2+}+CO_3^{2-}\rightarrow CaCO_3\downarrow)$ is accompanied by biological processes, both of which often simultaneously or sequentially. Microbes from soils and aqueous media have been frequently reported to induce the precipitation of calcium carbonate mineral phases in both natural and laboratory settings. Because of this, microbial activity is regarded as an important player in the formation of carbonate sediments and soil carbonate deposits. A number of studies have investigated carbonate mineralization induced by microbes, including that by soil bacteria. An endospore-forming soil bacterium, urease positive, participates in calcite precipitation environment by producing the urease enzyme. Urease catalyzes urea to produce CO₂ and ammonia, resulting in an increase of pH in the surroundings where mineral ions (Ca²⁺ and CO₃²⁻) precipitate as CaCO₃.

The precipitation of calcium carbonate is governed by four parameters; (1) concentration of calcium ion, (2) concentration of carbonate ions, (3) the pH of the environment (which affects calcium carbonate solubility) and (4) the presence of nucleation sites (**Hammes and**

Vertraete, 2002). Calcium carbonate may theoretically occur in natural environment by increasing concentration of calcium and/or carbonate in solution or by decreasing the solubility of calcium and/or carbonate. Calcite precipitation may come about abiotically by evaporation or shift temperature or pressure or biotically through the action of microorganisms. Bacteria have themselves been shown to be excellent nucleation sites for growing minerals during the formation of rock (Ferris et Ferris et al., 1987), with many studies al., 1986, confirming the precipitation of calcite on bacterial cell surface (Fujita et al., 2000, Hammes et al., 2003c, Warren et al., 2001). As there is no shortage of nucleation sites in bacterial culture, the first three parameters of calcium and carbonate concentration and pH are keys for microbial calcite precipitation (MCP).

1.1.1. Mechanism of microbial induced calcite precipitation:

Like other biomineralization processes, calcium carbonate (CaCO₃) precipitation can occur by two different mechanisms: biologically controlled or induced (**Lowenstan and Weiner, 1988**).