

Investigation of Mini-Screw Bone Cohesion During Application of Various Orthodontic Forces

A Thesis

Submitted to the Faculty of Dentistry Ain Shams University

In partial fulfillment of the requirement for Master Degree in Orthodontics

By

Mohamed Ibrahim Hassan

B.D.S. (2002)
Misr University for Science and Technology (MUST)

Faculty of Dentistry Ain Shams University 2012

Supervisors

Dr. Noha Ezzat Sabet

Professor of Orthodontics
Faculty of Dentistry-Ain Shams University

Dr. Ibrahim Mazen Negm

Lecturer of Orthodontics
Faculty of Dentistry – Ain Shams University

Dr. Eman Hassan Anwar

Professor and Head of division of oral & dental research National research center

Dedication

I would like to dedicate this work to my mother **Dr/ Salwa Mohamed Sobhy** as she has and will always be my role model in life.

I cannot express by words my deep gratitude to my wife, sons, father and my sister for supporting me throughout this work until it reached its end, as a part of their generous help throughout my life.

Acknowledgment

First of all, 1 would like to express my deepest gratitude and appreciation to **Professor Dr. Noha Ezzat Sabet,** Professor of Orthodontics, Faculty of dentistry — Ain Shams University, for her continuous help and unlimited support. It is a great honor to work under her guidance and supervision.

I am greatly grateful to **Dr. Ibrahim Mazen**, Lecturer of Orthodontics, Faculty of dentistry - Ain Shams University, for his continuous encouragement and valuable suggestions throughout this work that would have never been completed without his sincere guidance.

My sincere thanks to **Prof. Dr. Eman Hassan Anwar**, Head of division of oral & dental research, National research center, for her meticulous supervision, support and generous help all through the work.

My deepest appreciation and grateful thanks are to **Dr. Marwa Mokbel El Shafey**, Assistant professor of oral pathology, faculty of dentistry; Misr

International University. Her unique cooperation and remarkable help are highly appreciated and will always be remembered.

I am truly grateful to **Dr. Ahmed Mohammed Abdallah**, Supervisor of experimental surgery and animal research unit, medical research center, Ain Shams University for his great effort to bring this work to the attempted goal.

I would also like to express my deepest thanks to my dear professors, colleagues and stuff members of orthodontic department, Faculty of Dentistry, Ain Shams University for their great support, and cooperation.

Last, but not least, my deepest gratitude to my dear professors, colleagues and stuff members of Demerdash hospital, Ain Shams University for their great support, and encouragement.

Mohamed Ibrahim Hassan

LIST OF CONTENTS

Pag	e
List of Tablesii	
List of Figuresiv	
List of abbreviationvii	i
Introduction1	
Review of Literature4	
Aim of the study41	
Material and Methods42	
Results82	
Discussion11	6
Summary & Conclusions12	7
Recommendations13	0
References13	1
Appendix	
Arabic summary	

LIST OF TABLES

Table	Title	Page
no.	Title	no.
1	Mean, standard deviation, minimum, maximum values and results of One way anova for effect of different loads on contact ratio in immediate loading and unloaded group.	
2	Mean, standard deviation, minimum, maximum values and results of One way anova for effect of different loads on contact ratio in delayed loading and unloaded group	
3	Mean, standard deviation values and results of Student t- test analysis of effect of loading of 150gm over contact ratio at immediate and delayed groups.	95
4	Mean, standard deviation values and results of Student t- test analysis of effect of loading of 300gm over contact ratio at immediate and delayed groups.	97
5	Mean and standard deviation values and results of Student t-test analysis of effect of different cortical bone thickness over contact ratio in immediate loading of 150gm	99
6	Mean and standard deviation values and result of Student t-test analysis of effect of different cortical bone thickness over contact ratio in immediate loading of 300gm	101
7	Mean and standard deviation values and results of Student t-test analysis of effect of different cortical bone thickness over contact ratio in delayed loading of 150gm	103
8	Mean and standard deviation values and results of Student t-test analysis of effect of different cortical bone thickness over contact ratio in delayed loading of 300gm	105
9	Mean and standard deviation values and results of Student t-test analysis of effect of immediate and delayed loading of 150gm over contact ratio in Cortical bone thickness less or equal 1.5mm.	107

Table	Title	Page
no.		no.
10	Mean and standard deviation values and results of Student t-test analysis of effect of immediate and delayed loading of 300gm over contact ratio in Cortical bone thickness less or equal 1.5mm.	109
11	Mean and standard deviation values and results of Student t-test analysis of effect of immediate and delayed loading of 150gm over contact ratio in Cortical bone thickness more than 1.5mm.	111
12	Mean and standard deviation values and result of Student t-test analysis of effect of immediate and delayed loading of 300gm over contact ratio in Cortical bone thickness more than 1.5mm.	113
13	Pearson correlation between contact ratio and cortical bone thickness.	115

LIST OF FIGURES

Fig.	Title	Page
no.	Title	no.
1 (a)	Mandible of goat; occlusal view	44
1 (b)	Mandible of goat; lateral view	44
2 (a)	The Tomas mini-screw utilized in the study	46
2 (b)	Tomas mini-screw head with 22 cross slot	46
3(a)	Schematic diagram representing the assortment of the mini-screw implants	
3(b)	Schematic diagram representing the mini-screw implant i immediate loading group	
3(c)	Schematic diagram representing the mini-screw implant i delayed loading group	
4	Sedation of the goat	51
5	Disinfection of the surgical site	53
6	Horizontal incision in the mandible of the goat	53
7	Vertical incision in the mandible of the goat	54
8	Molt's mucoperiosteal elevator	55
9	Reflection of the flap	56
10	Exposed fresh surface of the alveolar bone	56
11	Stainless steel wire guide	58
12	The specific jig utilized to determine the amount of opening of the coil spring	
13	Stainless steel wire guide utilized to determine the MS insertion site	
14(a)	MSI in its sterile pack	60
14(b)	Tomas-screw driver	61
14(c)	Removal of the MSI from its sterile pack	61
15	MSI inserted in the tomas-screw driver	61

Fig.	Title	Page
no.		no.
16	MSI insertion in the goat's mandible using the tomas-screv driver	
17	MSI inserted in the mandible of the goat	62
18	MSI primary stability checked via a dental probe	64
19	MSIs inserted in the right side (unloaded group)	64
20	MSIs inserted in the left side (loaded group)	65
21	MSIs with St.St. ligature wire threaded through its head	65
22	Suturing of the surgical site in the unloaded group	67
23	Tomas gingival punch	67
24	Suturing of surgical site in the loaded group with the St.S ligature threaded through the soft tissue.	
25	Dentos coil spring used for force application	69
26	Loading of the MSIs via coil spring.	69
27(a)	Orthodontic boley gauge utilized to verify the opening of the coil spring.	
27(b)	Verification of the opening of the coil spring via bolegauge.	
28	Edentulous area dissected containing the MSIs	74
29	Block of bone containing MSI	74
30	Block grinded showing MSI surface	75
31	Block of bone containing MSI after complete dryness	75
32(a)	Edwards S15OA Sputter Coater	77
32(b)	Block containing MSI after gold coating	77
33	FE-SEM, JXA-840A, JOEL type	78
34	Finite element scanning electron photomicograph magnified 30x	
35	Schematic diagram illustrating methods for calculating the linear measurements	

Fig.	Title	Page
no.	Tiue	no.
36	The bone-screw contact ratio in the different force magnitudes of the immediate loading group and unloaded group.	i
37 (a&b)	Finite element scanning electron photomicrograph magnified 30x for the unloaded group	
38 (a&b)	Finite element scanning electron photomicrograph magnified 30x for the immediate loading group of 150gm.	
39 (a&b)	Finite element scanning electron photomicrograph magnified 30x for the immediate loading group of 300gm.	
40	The bone-screw contact ratio in the different force magnitudes of the delayed loading group and unloaded group.	1
41 (a&b)	Finite element scanning electron photomicrograph magnified 30x for the delayed loading group of 150gm	
42 (a&b)	Finite element scanning electron photomicrograph magnified 30x for the delayed loading group of 300gm	
43	The bone-screw contact ratio in loading of 150gm in immediate and delayed loaded groups	
44	The bone-screw contact ratio in loading of 300gm in immediate and delayed loaded groups	
45	The bone-screw contact ratio with different cortical bone thickness in immediate loading group at 150gm	
46	The bone-screw contact ratio with different cortical bone thickness in immediate loading group at 300gm	
47	The bone-screw contact ratio with different cortical bone thickness in delayed loading group at 150gm	
48	The bone-screw contact ratio with different cortical bone thickness in delayed loading group at 300gm	
49	The bone-screw contact ratio with immediate and delayed loading of 150gm in Cortical bone thickness less or equal 1.5mm	1

Fig.	Title	Page
no.	11110	no.
50	The bone-screw contact ratio with immediate and delayed loading of 300gm in Cortical bone thickness less or equal 1.5mm.	1
51	The bone-screw contact ratio with immediate and delayed loading at 150gm in Cortical bone thickness more than 1.5mm.	ı
52	The bone-screw contact ratio with immediate and delayed loading at 300gm in cortical bone thickness more than 1.5mm	ı
53	Scatter plot for contact ratio and cortical bone thickness	115
54	The Abso anchor mini-screw utilized in the pilot study	
55	Abso anchor mini-screw inserted in the hand driven driver	••••
56	Abso anchor mini-screw inserted in the mandible of the goat	
57	The loose Abso anchor mini-screw	

LIST OF ABBREVIATIONS

Abbrev.	Full term
Ni-Ti	Nickel-titanium
SAS	Skeletal anchorage system
HA	Hydroxylapatite
MIT	Maximum insertion torque
FT	Fracture torque
MRT	Maximum removal torque
CW	Clockwise direction
CCW	Counterclockwise direction
BMD	Bone mineral density
CBT	Cortical bone thickness
SLAO	Sandblasted, large-grit, and anodic-oxidation
SLA	Sandblasted, large-grit, and acid-etching
TADs	Temporary anchorage devices
MSI	Mini-screw implant
ASTM	American Society for Testing and Materials

Introduction

INTRODUCTION

Since the introduction of fixed appliance, anchorage has always been a challenging question for orthodontists.

According to Newton's third law; "Every action creates a reaction which is equal in magnitude and opposite in direction". Unfortunately, these reactive forces often result in undesirable movements to anchor teeth.

Anchorage is defined as the resistance to unwanted tooth movement. Understanding each patient's anchorage requirements is of paramount importance and ensures high-quality care. Unexpected or unintended anchorage loss frequently results in a compromised finish.

As a result, orthodontists have historically used a variety of appliances and strategies to enhance anchorage, particularly when minimal movement of the teeth providing the anchorage is desired.

Extraoral, intra-arch, and inter-arch mechanics were developed to reinforce anchorage and thereby facilitate a more favorable response. Although such mechanics improve the quality of the final treatment results, they do not permit total control of