

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ٢٠-٠٤% منوية ورطوية نسبية من ٢٠-٤٠ منوية ورطوية نسبية من ٢٠-١٥ be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الاصليـة تالفـة

بالرسالة صفحات لم ترد بالاصل

629,1

OPTIMUM FREQENCY DESIGN OF CONICAL SHELL STRUCTURES

By/

AHMED ISMAIL HASSAN

B.Sc. in Aerospace engineering

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirement for the degree of

MASTER OF SCIENCE

in

AEROSPACE ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
September 2006

OPTIMUM FREQENCY DESIGN OF CONICAL SHELL STRUCTURES

By/

AHMED ISMAIL HASSAN

B.Sc. in Aerospace engineering

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirement for the degree of

MASTER OF SCIENCE

In

AEROSPACE ENGINEERING

Under the Supervision of

Prof.Dr. HANI MOHAMMED NEGM

Dr. KARAM Y. MAALAWI

Professor of Aircraft Structures
Department of Aerospace Engineering
Faculty of Engineering, Cairo University

Assoc. Prof. of Aerospace Engineering Department of Mechanical Engineering National Research Center, Dokki, Cairo

Dr.MOHAMED EL SEFFI

Doctor of A\C structures

Department of Aerospace Engineering
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
September 2006

OPTIMUM FREQENCY DESIGN OF CONICAL SHELL STRUCTURES

By/

AHMED ISMAIL HASSAN

B.Sc. in Aerospace engineering

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirement for the degree of

MASTER OF SCIENCE in

AEROSPACE ENGINEERING

Approved by the Examining Committee

Prof. Dr. HANI MOHAMMED NEGM

(Thesis Main Advisor)

Professor of Aircraft Structures, Department of Aerospace Engineering
Faculty of Engineering, Cairo University.

M. M.

Prof. Dr. MOHAMMED NADER ABOUL-FOTOH

(Member)

Professor of Aircraft Structures, Department of Aerospace Engineering Faculty of Engineering, Cairo University.

Prof. Dr. ZAKARIA ZAKI MOMEH

(Member)

Professor of Mechanical Engineer, Department of Mechanical Engineering Faculty of Military Technical.

Dr. Karam Y. Malawi.

(out of country) SDr. Mohamed El Seffi (out of country)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT September 2006

Table of Contents

Approval Sh	eet	i
Table of Cor	itents	ii
List of Table	s .	vi
List of Figur	es	viii
List of Symb	ols and Abbreviations	xii
Acknowledg	ements	xv
Abstract		xvi
Chapter 1	Introduction and Litrature Review	1
1.1	Historical Review of vibration analysis	2
1.2	Vibration of Metallic Conical Shell	4
	1.2.1 Variable Thickness Shells	. 5
,	1.2.2 Stiffened Shells	6
1.3	Vibration of Composite Shells	8
,	1.3.1 High Thermal Resistance Composite Material	10
1.4	Frequency Optimization of Shell Structures	12
1.5	Aim of the Work	13
1.6	Thesis Layout	14
Chapter 2	Fundamental Aspects of Conical Shell Vibration	
	and Optimization	15
2.1	Definition of Shell Structure	15
2.2.	Conical Shells	17
2.3.	Free Vibration of Shells	18
	2.3.1 Method of Solution	19

2.4		Design	Optimization	21
	•	2.4.1	Basic Definition	21
		2.4.2	Classification of Optimization problems	25
		2.4.3	Selection Factors	27
	2.5	Optimu	ım Design of Conical Shells	27
Chapter	3	Analys	is of Isotropic Conical Shell Structures	31
	3.1	Shell T	heories	31
•		3.1.1	Love's First Approximation Shell Theory	32
	•	3.1.2	Stiffened Conical Shell Theory	33
3	3.2	Fundan	nental Relationships	34
3	3.3	Natural	Modes of Vibration	36
3	3.4	Bendin	g and Membrane Strain Energy	38
2	3.5	Problem	n Formulation	40
		3.5.1	Geometrical Preliminaries	40
		3.5.2	Governing Equations of Motion	42
3	3.6	Energy 1	Formulation for the General Case of Stiffened Shell	48
		3.6.1	Strain Energy	48
		3.6.2	Kinetic Energy	50
3.	.7	The Eig	nvalue Problem	51
•	,	•		
Chapter 4		Laminated Composite Conical Nozzles		54
4.			etion to Composite Materials	54
4.	2	-	Structural Composite Material	57
-		4.2.1	Comparison of Thermo-Structural Composites	
			to Refractory Metal Alloys	59

	4.2.2	Carbon-Carbon Composites	61
	4.2.3	Manufacturing Process of Carbon-Carbon	•
		composites	62
	4.2.4	General Properties of C/C	64
4.3	Analysis	s of Laminated Composite Conical Shells	65
	4.3.1	Geometric Preliminaries	65
	4.3.2	Kinematical Relations	67
	4.3.3	Constitutive Relations	67
4.4	Mode Sł	hape Functions	72
4.5	Energy I	Formulation for Orthotropic Composit Materials	72
	4.5.1	Strain Energy	72
	4.5.2	Kinetic Energy	73
4.6	Impleme	entation to Mathematica Software	74
•			
Chapter 5	Optimi	zation Model Formulation	76
5.1	Basic A	ssumptions	76
5.2	Design (Objectives	76
5.3	Structur	al Mass	77
5.4	Design '	Variables	7 9
5.5	The Prea	assigned Parameters	80
5.6	Design (Constraints	80
5.7	Optimiz	ation Analysis	81
5.8	The Inte	rior Penalty Function Technique	84
Chapter 6	Function	nal Behvior of the Fundamental Frequency	86
6.1	Definition	n of a Baseline Design	86
	6.1.1	Verification of Results	87

	6.2	Behavior of the Fundamental Frequency	90		
	6.3	Natural Frequency of Isotropic Metallic Conical Shells			
		with Variable Thickness Distribution	95		
••	-	6.3.1 Isotropic Shell with Linear Thickness Distribution	on 95		
		6.3.2 Isotropic Shell with Parabolic Thickness			
	•	Distribution	100		
•	6.4	Natural Frequencies of Stiffened Metallic Conical Shell	104		
	6.5	Orthotropic Laminated Conical shell Structures	116		
	-				
Chapter	7	Optimization Results and Conculusion	128		
	7.1	Optimum Patterns of Unstiffened Metallic Conical Sheels	128		
		7.1.1 Effect of the Minimum Allowable Thickness			
		Constraint	131		
	7.2	Optimum Patterns of Stiffened Metallic Conical Shells	135		
	7.3	Conclusions and Future Work	140		
,					

List of Tables

Table	Caption	page
No.		
2.1	Optimization problem components.	25
2.2	Different Classifications of Optimization Problems.	26
5.1	Mass of the conical shell structure, M _c .	79
6.1	Baseline design data of a metallic conical structure with	
	uniform thickness distribution.	87
6.2	Comparison of the calculated frequencies (Hz) for different	,
-	mesh-sizes of ANSYS and Rayleigh-Ritz of the present study	
	(axial wave number m=1).	89
6.3	Natural frequencies, f (Hz) Divergent conical Shells with	
	linear thickness distribution.	96
6.4	Natural frequencies, f (Hz) Convergent conical Shells with	
	linear thickness distribution.	96
6.5	Natural frequencies, f (Hz) Divergent conical Shells with	
	parabolic thickness distribution.	101
6.6	Natural frequencies, f (Hz) Convergent conical Shells with	-
٠	parabolic thickness distribution.	101
6.7	Stiffeners locations (meter) for different values of $N_{\rm r}$ and $B_{\rm f}$.	106
6.8	Calculated stiffener sizes, $b_{r,k}$ (mm), for constant structural mass.	107
6.9	Natural frequencies, f in Hz. Case of stiffened divergent	
	conical shells (N _r = 8, equally spaced).	108
6.10	Natural frequencies, f in Hz. Case of stiffened convergent	
	conical shells (N _r = 8, equally spaced).	108
6.11	Properties of composite materials.	116

Table	Caption	page
No.		
6.12	Frequency variation f in Hz, of silicon-titanium divergent Conical	
	shell.	117
6.13	Frequency variation f in Hz, of silicon-titanium convergent Conical	
	shell.	117
6.14	Frequency variation f in Hz, of carbon-carbon divergent conical	
	shell.	120
6.15	Frequency variation f in Hz, of carbon-carbon convergent conical	
	shell.	120
6.16	Fundamental frequency of composite divergent conical shells.	122
6.17	Fundamental frequency of composite convergent conical shells.	122
7.1	Optimal shell thickness distribution. Case of unstiffened metallic	
	divergent conical shell.	130
7.2	Optimal shell thickness distribution. Case of unstiffened metallic	
	convergent conical shell.	130
7.3	Optimal solutions for metallic stiffened divergent shells.	136
7.4	Optimal solutions for metallic stiffened convergent shells.	136

List of Figures

Figure No.	Caption	Page
1.1	Typical aerospace shell structure: thust vectoring nozzle	
	of a rocket engine.	3
1.2	Experimental arrangement for clamped-free specimens	4
1.3	Jesper conical divergent nozzle model.	5
1.4	A truncated conical shells with variable thickness.	6
1.5	Schematic diagram showing experimental set-up	8
1.6	Noveltex reinforced composite nozzle	11
1.7	Convergent-Divergent exhaust nozzles of space vehicles	13
2.1	General geometric characteristics of shell structures	16
2.2	Right circular conical shell	17
2.3	Classification of the methods of solutions	19
2.4	A design point as a vector $\vec{\mathbf{D}}$ in the design space	22
2.5	Constraint surface in a design space	23
2.6	Different types of clamped/free conical shell structures	29
3.1	Love's first approximation for thin shell theory	33
3.2	The three fundamental relationships of solid mechanics	35
3.3	Nodal pattern of a cylindrical shell	37
3.4	Clamped-free conical shell vibration mode shape (m=2, n=5)	37
3.5	Strain energy contributions for a typical freely vibrating circular cylindrical shell	38
3.6	Natural frequencies for a freely vibrating circular cylindrical	
	shell with clamped ends	39
3.7	Unstiffened clamped-free conical shell	41
3.8	General configuration of stiffened metallic conical shell structures	42