

# EFFECTS OF UTILIZING AN ELECTRO— HYDRAULIC SERVO VALVE ON THE HANDLING DEDFORMANCE OF A THREE-WHEEL VEHICLE

A thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science in Mechanical Engineering (Automotive)

#### Submitted by

### Eng. Mostafa Tamer Mohamed Noaman Ahmed Nasr El-Din Mohamed Heshmat

B.Sc. in mechanical engineering (Aircraft), Military Technical College, 2000

#### Supervisors

Prof. Dr. M. Sabry Dwidar

Prof. Dr. M. Galal Rabie

Faculty of Engineering

Modern Academy for

Ain-Shams University

Engineering & Technology

Dr. Mohamed Ahmed Abdelaziz

Faculty of Engineering

**Ain-Shams University** 

Cairo, February 2013

#### **ABSTRACT**

This thesis is dedicated to investigate the dynamic behavior of a three-wheel vehicle during steering action. The vehicle is equipped with an electro-hydraulic steering system incorporating directional control valve assembly DCV. This valve consists of three DCVs in one housing. These valves are of 3/2 poppet type direct controlled by three DC solenoids. Moreover, a new steering system is proposed. The new system is based upon an electro-hydraulic servo valve EHSV. The dynamic behavior of both of the systems are compared and analyzed. The investigations are extended to cover the dynamic handling performance of the vehicle during road maneuvers.

The thesis contains a comprehensive summary of the available literature relevant to the subject of the study. The studied literature covered the dynamic behaviors of the three and four wheel vehicles which use hydraulic steering systems. The objective of the present study was determined on the basis of the literature review.

The thesis included a detailed description of all components of the electro-hydraulic steering system used to control the three-wheel vehicle in addition to the mechanical mechanisms constituting the system. The system includes three directional control valves to control the steering angle of the front wheel of the vehicle. Mathematical models have been deduced that describes the static and dynamic performance of the hydraulic system and the mechanisms that the steering system contains. The simulation programs have been developed based on the deduced mathematical models. The transient response of the system to step input were calculated, presented and discussed.

Experimental tests have been carried to measure the fluid flow characteristics through the directional control valves. The experimental results showed good agreement with the simulation results, which validate the simulation program in the steady state operating mode.

A new system was proposed by replacing the directional control valves assembly by an electro-hydraulic servo valve with PI controller. The describing mathematical model was deduced and a simulation program was developed for the proposed system. The transient response of the proposed system was calculated and compared with that of the original system.

The transient handling responses of the vehicle was examined when the steering system equipped with the DCV assembly and when equipped with the proposed EHSV.

The dynamic performance of the vehicle, controlled by the electro-hydraulic servo system, was investigated considering different values of the design and operating parameters. The transient response of the vehicle to diverse inputs was calculated using the simulation program, mainly the step input of the steering pedal, ramp input, sinusoidal input and movement represented by polynomial functions of the fifth order to simulate the input function movement satisfying smooth displacement, velocity and acceleration at the beginning and end of the pedal movement. The vehicle dynamics was studied during changing lane, double lane change, the case of road curvature follow up and the case of U-turn due to the steering pedal input, as well as, the case of subjecting the vehicle body to a side force due to wind.

#### **ACKNOWLEDGEMENT**

**Thanks to Allah before and after**, who blessed me with dedicated supervisors, and supported me until the conclusion of this work.

The author is indebted to many people for their advice, assistance and encouragement while advancing in his thesis, especially **Professor Dr.**M. Sabry Dwidar, Prof. of Automotive Engineering, Ain Shams University, for his supervision and valuable comments and suggestions.

The author also wishes to express his deepest thanks to **Maj. Gen. Prof. Dr. M. G. Rabie**, Prof. of mechanical engineering, Modern Academy for Engineering and Technology, for his supervision, guidance and assistance throughout the whole thesis.

The author likes to express his sincere gratitude to **Dr. Ahmed. I. Abdelaziz**, Lecturer at the Automotive Engineering, Faculty of Engineering, Ain Shams University, for his support, for the many ideas that he gave during the development of this work and for always trying to let him think in terms of new directions to explore.

The author extends his wishes to **Dr. Mohamed Ahmed Abdelaziz**, Lecturer at the Automotive Engineering, Faculty of Engineering, Ain Shams University for his invaluable discussions, guidance, support, encouragement and supervision throughout the course of this research.

Acknowledgment is also extended to all staff members and colleagues in the Automotive Engineering Department, Ain shams university.

This work is dedicated to my father, my mother and Mohamed.

Statement

**STATEMENT** 

This dissertation is submitted to Ain Shams University for the Degree

of M.Sc. in Mechanical Engineering (Automotive).

The author has carried out the work included in this thesis at the

Department of Automotive Engineering, Faculty of Engineering, Ain

Shams University.

No part of this thesis has been submitted for a degree or a qualification

at any other University or institute.

Date: 10<sup>th</sup> Feb. 2013

Signature:

Name: M. T. Heshmat

iv

## **CONTENTS**

|              |                                            | Page          |  |
|--------------|--------------------------------------------|---------------|--|
| ENGLISH '    | TITLE                                      |               |  |
| EXAMINA      | TION COMMITTEE                             |               |  |
| ABSTRAC      | T                                          | i             |  |
| ACKNOW       | LEDGEMENT                                  | iii           |  |
| STATEME      | NT                                         | iv            |  |
| CONTENT      | S                                          | v             |  |
| LIST OF F    | LIST OF FIGURES                            |               |  |
| LIST OF T    | ABLES                                      | xvii<br>xviii |  |
| NOMENCLATURE |                                            |               |  |
| ABBREVL      | ATIONS                                     | xxviii        |  |
| PREFACE      |                                            | 1             |  |
| СНАРТЕК      | R (1)                                      | 3             |  |
| LITERAT      | URE REVIEW                                 |               |  |
| 1.1          | Introduction                               | 3             |  |
| 1.2          | The Task of the Steering System            | 3             |  |
| 1.3          | Types of Steering Systems                  | 3             |  |
|              | 1.3.1 Conventional Steering Systems        | 3             |  |
|              | 1.3.2 Power Steering Systems               | 4             |  |
|              | 1.3.3 Steer by Wire Systems                | 5             |  |
| 1.4          | Configurations of the Three-Wheel Vehicles | 7             |  |
|              | 1.4.1 Two Front Wheels Steering            | 7             |  |

|                 | 1.4.2 Two Rear Wheels Steering                            | 8  |  |
|-----------------|-----------------------------------------------------------|----|--|
| 1.5             | Strategies of the Steer-by-Wire System Control            | 8  |  |
| 1.6             | Electro-hydraulic Servo Valve Technology                  | 9  |  |
| 1.7             | Steering System Improvements                              | 10 |  |
| 1.8             | Objective of the Present Work                             | 19 |  |
| CHAPTER         | 2 (2)                                                     | 21 |  |
| SYSTEM<br>MODEL | DESCRIPTION AND MATHEMATICAL                              |    |  |
| 2.1             | Introduction                                              | 21 |  |
| 2.2             | System Description and operation                          | 21 |  |
|                 | 2.2.1 Hydraulic Generator                                 | 21 |  |
|                 | 2.2.2 Mechanical System                                   | 22 |  |
|                 | 2.2.3 Hydraulic Steering System Description and Operation | 26 |  |
|                 | 2.2.3.1 Steering Actuator                                 | 28 |  |
|                 | 2.2.3.2 Steering DCV Assembly                             | 29 |  |
| 2.3             | Mathematical Model                                        | 32 |  |
|                 | 2.3.1 Mathematical Model of the DCV-1                     | 33 |  |
|                 | 2.3.2 Continuity Equations                                | 47 |  |
|                 | 2.3.3 Equation of Motion of the Piston                    | 50 |  |
| CHAPTER         | 4(3)                                                      | 51 |  |
| EXPERIM         | ENTAL WORK AND MODEL VALIDATION                           |    |  |
| 3.1             | Introduction                                              | 51 |  |
| 3.2             | Instruments and Test Setup                                |    |  |

|         | Co                                                                       | ontents |
|---------|--------------------------------------------------------------------------|---------|
|         | 3.2.1 Test Stand Description                                             | 51      |
|         | 3.2.2 Accessories                                                        | 53      |
|         | 3.2.3 Test Setup                                                         | 54      |
| 3.3     | Experimental Conditions and Functional Test Procedures                   | 56      |
| 3.4     | Steering Valve Steady State Characteristics                              | 57      |
| 3.5     | Validation of Simulation Program of the Steering DCV in the Steady State | 57      |
| 3.6     | Conclusion                                                               | 59      |
| CHAPTER | . (4)                                                                    | 60      |
| ELECTRO | -HYDRAULIC SERVO STEERING SYSTEM                                         |         |
| 4.1     | Introduction                                                             | 60      |
| 4.2     | Servo Valve Description                                                  | 60      |
|         | 4.2.1 Single Stage Servo Valve                                           | 60      |
|         | 4.2.2 Two-Stage Servo Valve                                              | 63      |
| 4.3     | Modeling of Steering System                                              | 65      |
|         | 4.3.1 Electro-hydraulic Servo Valve                                      | 65      |
|         | 4.3.2 Flow Rates through the Spool Valve                                 | 68      |
|         | 4.3.3 Continuity Equations Applied to the Cylinder Chambers              | 70      |
|         | 4.3.4 Equation of Motion of the Piston                                   | 70      |
|         | 4.3.5 Feedback Equation                                                  | 71      |
|         | 4.3.6 PID Controller                                                     | 71      |

| CHAPTE  | R (5)  |                                                                                    |                                                        | 76  |
|---------|--------|------------------------------------------------------------------------------------|--------------------------------------------------------|-----|
| VEHICLE | E DYNA | MIC HA                                                                             | NDLING RESPONSE                                        |     |
| 5.1     | Introd | uction                                                                             |                                                        | 76  |
| 5.2     |        |                                                                                    | the Vehicle Rollover Speed<br>Road Adhesion Limitation | 76  |
| 5.3     | Transi | ent Handl                                                                          | ling Model                                             | 81  |
| 5.4     | _      | Comparison between the Transient Handling<br>Responses of the Two Steering Systems |                                                        |     |
| 5.5     | Transi | ent Handl                                                                          | ling Model Response                                    | 90  |
|         | 5.5.1  | Step Inp                                                                           | ut                                                     | 90  |
|         | 5.5.2  | Ramp In                                                                            | put                                                    | 92  |
|         | 5.5.3  | Sinusoid                                                                           | lal Input                                              | 93  |
|         | 5.5.4  | Polynom                                                                            | nial Function Input                                    | 94  |
|         |        | 5.5.4.1                                                                            | Lane Change Response                                   | 94  |
|         |        | 5.5.4.2                                                                            | Double Lane Change Response                            | 97  |
|         |        | 5.5.4.3                                                                            | Road Curvature Follow Up<br>Response                   | 99  |
|         |        | 5.5.4.4                                                                            | U-turn Response                                        | 100 |
| 5.6     | Param  | etric Stud                                                                         | ly                                                     | 100 |
|         | 5.6.1  | Effects of                                                                         | of Tire Cornering Stiffness                            | 101 |
|         | 5.6.2  | Effects of                                                                         | of Vehicle Speed                                       | 103 |
| 5.7     | Possib | oility of R                                                                        | esponse Improvement                                    | 104 |

|              |                                                                                    | Contents |
|--------------|------------------------------------------------------------------------------------|----------|
| 5.8          | Conclusions                                                                        | 106      |
| СНАРТЕ       | R (6)                                                                              | 108      |
| CONCLUS      | SIONS AND RECOMMENDATIONS                                                          |          |
| 6.1          | General                                                                            | 108      |
| 6.2          | Conclusions                                                                        | 109      |
| 6.3          | Recommendations for Future Work                                                    | 112      |
| REFEREN      | CES                                                                                | 113      |
| APPENDIC     | CES                                                                                | 117      |
| APPENDIX (A) |                                                                                    | 118      |
|              | LATIONSHIP BETWEEN THE STEERING OR DISPLACEMENT AND THE STEERING                   |          |
| A.1          | The Relationship between the Steering Actuator Displacement and the Steering Angle | r 118    |
| A.2          | The Relationship between Steering Load Arm and Steering Angle                      | n 123    |
| APPENDIX     | X(B)                                                                               | 125      |
|              | ATION OF THE MASS MOMENT OF INERTIA<br>FRONT WHEEL ASSEMBLY AROUND THE<br>GAXIS    |          |
| B.1          | Introduction                                                                       | 125      |
| B.2          | The Experiment                                                                     | 125      |
| APPENDIX (C) |                                                                                    | 132      |
| ROTAMET      | TER THEORY OF OPERATION                                                            |          |
| C.1          | Introduction                                                                       | 132      |
| C.2          | Defining of a Fluid Flow by a Rotameter                                            | 132      |

|                |                                                    | Contents |
|----------------|----------------------------------------------------|----------|
| APPENDIX       | X (D)                                              | 136      |
| DESIGN O       | F P, PI AND PID CONTROLLERS                        |          |
| D.1            | Find the Limiting Open Loop Gain for the Stability | 138      |
| D.2            | P, PI and PID Controller Design                    | 139      |
| D.3            | Implementation of the P, PI, PID Controllers       | 140      |
| D.4            | Tuning of the Controllers Parameters               | 141      |
| APPENDIX (E)   |                                                    | 143      |
| FINDING T      | THE TIRE/ROAD ADHESION COEFFICIENT                 |          |
| ARABIC SUMMARY |                                                    |          |
| ARABIC T       | ITLE                                               |          |

## LIST OF FIGURES

|           |                                                                                                                                 | Page |
|-----------|---------------------------------------------------------------------------------------------------------------------------------|------|
| Fig. 1.1  | Wheel positions for various three-wheeled vehicle configurations when turning [5].                                              | 7    |
| Fig. 1.2  | Driving results using the third algorithm [20].                                                                                 | 14   |
| Fig. 1.3  | Changing the steering angle $\delta$ and the modulus $ V $ of the aircraft velocity [22].                                       | 16   |
| Fig. 1.4  | Detail from <b>Fig. 1.3.a</b> [22].                                                                                             | 17   |
| Fig. 1.5  | Aircraft c.g curves in the (X, Y)-plane respectively [22].                                                                      | 18   |
| Fig. 1.6  | Time plots of aircraft velocity $ V $ at points $\delta = 6.54^{\circ}$ (b) and $\delta = 8.14^{\circ}$ (c), respectively [22]. | 19   |
| Fig. 2.1  | Hydraulic generator diagram.                                                                                                    | 22   |
| Fig. 2.2  | Front wheel steering mechanism [23].                                                                                            | 23   |
| Fig. 2.3  | Effect of rolling resistance on a steering tire [23].                                                                           | 25   |
| Fig. 2.4  | Steering system hydraulic diagram [23].                                                                                         | 26   |
| Fig. 2.5  | Simulation block diagram of the DCV steering command.                                                                           | 27   |
| Fig. 2.6  | Steering hydraulic actuator sectional view.                                                                                     | 29   |
| Fig. 2.7  | Schematic of the steering DCV assembly and the actuator [23].                                                                   | 30   |
| Fig. 2.8  | Real picture of the steering DCV assembly.                                                                                      | 31   |
| Fig. 2.9  | Schematic of the DCV-1 [23].                                                                                                    | 32   |
| Fig. 2.10 | Two positions of the DCV-1 spherical poppet [23].                                                                               | 38   |

| Fig. 2.11 | DCV-1 Throttle and pressure areas of pressure side seat (5) [23].                                                                          | 41 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|----|
| Fig. 2.12 | DCV-1 throttle and pressure areas of return side seat (4) [23].                                                                            | 42 |
| Fig. 2.13 | Transient response of poppet displacement $x_{2P}$ to step input of solenoid force $F_{S2} = 15$ N [23].                                   | 44 |
| Fig. 2.14 | Transient response of poppet displacement $x_{2P}$ to step input of solenoid force $F_{S2} = 0$ applied [23].                              | 45 |
| Fig. 2.15 | DCV-2 throttle and pressure areas change with poppet displacement of return and pressure side seats.                                       | 46 |
| Fig. 2.16 | Inner chamber (S) functional scheme [23].                                                                                                  | 47 |
| Fig. 2.17 | Cylinder chamber (A) [23].                                                                                                                 | 49 |
| Fig. 2.18 | Cylinder chamber (B) [23].                                                                                                                 | 50 |
| Fig. 3.1  | Schematic diagram of the test stand.                                                                                                       | 52 |
| Fig. 3.2  | Real photo of the test accessories.                                                                                                        | 54 |
| Fig. 3.3  | Schematic diagram of the test setup.                                                                                                       | 55 |
| Fig. 3.4  | Real photo of the experimental test.                                                                                                       | 56 |
| Fig. 3.5  | Comparison between the experimental and theoretical steady state results of $Q_{2P}$ , $(P_P-P_{AB})$ where E1 and E2 were energized [23]. | 58 |
| Fig. 3.6  | Comparison between the experimental and theoretical steady state results of $Q_{3T}$ , $(P_{AB}-P_T)$ where E1 and E2 were energized [23]. | 58 |
| Fig. 4.1  | Construction of a single stage servo valve [17].                                                                                           | 61 |
| Fig 4 2   | Layout of the double jet flapper valve [17]                                                                                                | 62 |

| Fig. 4.3  | Pressure characteristics of a double jet flapper valve, calculated [17].                                             | 63 |
|-----------|----------------------------------------------------------------------------------------------------------------------|----|
| Fig. 4.4  | Two stage electro-hydraulic servo valve with mechanical feedback [17].                                               | 64 |
| Fig. 4.5  | Functional block diagram of a two-stage EHSV with mechanical feedback [17].                                          | 65 |
| Fig. 4.6  | Schematic of the electro-hydraulic servo actuator [17].                                                              | 66 |
| Fig. 4.7  | Transient response of the servo valve spool displacement to a (10) mA step [17].                                     | 68 |
| Fig. 4.8  | Connection of the PID controller in the feedback loop [17].                                                          | 72 |
| Fig. 4.9  | Simulation block diagram of the steering system with P and PI Controller [17].                                       | 72 |
| Fig. 4.10 | Step response of the electro-hydraulic servo-actuator, for the two configurations given in <b>Fig. 4.9</b> [17].     | 73 |
| Fig. 4.11 | Simulation block diagram of the steering system with PI controller integral of time absolute error ITAE [27].        | 74 |
| Fig. 4.12 | Comparison between the step response of the loaded steering system incorporating the EHSV and the DCV assembly [27]. | 75 |
| Fig. 5.1  | A 3-wheel vehicle rollover model in $x_{cg}$ - $y_{cg}$ plane [27].                                                  | 77 |
| Fig. 5.2  | A 3-wheel vehicle rollover 3-D model [27].                                                                           | 78 |
| Fig. 5.3  | Relation between rollover speed, turning radius and the steer angle [27].                                            | 80 |

| Fig. 5.4  | Velocity change and trajectory of the vehicle c.g, during the transient response using axes fixed to vehicle body [24].                              | 82 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Fig. 5.5  | Simplified vehicle model for analysis of transient motions [24].                                                                                     | 83 |
| Fig. 5.6  | Simplified vehicle model for analysis of transient motions [24].                                                                                     | 83 |
| Fig. 5.7  | Simulation block diagram of Eq. 5.9 and its transformation in world axis.                                                                            | 87 |
| Fig. 5.8  | Simulation block diagram of Eq. 5.10 and its transformation in world axis.                                                                           | 87 |
| Fig. 5.9  | Simulation block diagram of Eq. 5.11 and its transformation in world axis.                                                                           | 88 |
| Fig. 5.10 | Comparison between the effects of utilizing an EHSV in lieu of the steering DCV assembly on the transient response of the vehicle trajectories [27]. | 89 |
| Fig. 5.11 | Step input function of steer pedal to obtain L-turn maneuver.                                                                                        | 91 |
| Fig. 5.12 | An L-turn (90°) maneuver accomplished by step input of steer pedal.                                                                                  | 91 |
| Fig. 5.13 | The steer pedal ramp input function to change vehicle heading angle.                                                                                 | 92 |
| Fig. 5.14 | Change heading maneuver accomplished by ramp input.                                                                                                  | 92 |
| Fig. 5.15 | Sinusoidal pedal input.                                                                                                                              | 93 |
| Fig. 5.16 | Slalom test accomplished by sinusoidal input.                                                                                                        | 93 |
| Fig. 5.17 | Polynomial pedal input to achieve a lane change maneuver.                                                                                            | 96 |