

I am deeply thankful to "Allah" by the grace of whom, this work was possible.

I would like to express my deepest appreciation and gratitude to **Prof. Dr. Sahar Mohammed Elfekky**, Professor of Radiodiagnosis, Ain Shams University, for her kind supervision, valuable advises and constructive guidance were the real driving force in the initiation progress and completion of this thesis.

I am greatly indebted to **Dr. Mennatallah Hatem Shalaby**, Lecturer of Radiodiagnosis, Ain Shams University, for her greatest and unforgettable help and for her valuable comments, suggestions and close supervision. She dedicated much of his effort and time for the direction of this work.

My profound thanks go to Ass. Prof. Rasha Tarif Hamza, Assistant Professor of Pediatrics, Ain Shams University, for her indispensable help and continuous encouragement. Her effort was the backbone of the practical part of this work.

Lastly but not the least I should like to express my appreciations to the patients for their cooperation throughout my work.

Dunya BurhanAldin Abdulla

RENAL ANOMALIES IN PATIENTS WITH TURNER SYNDROME: ROLE OF SCINTIGRAPHY

Thesis

Submitted for partial fulfillment of M.Sc. Degree in Radiodiagnosis

By

Dunya BurhanAldin Abdulla

M.B.B.Ch.

Supervised By

Prof. Dr. Sahar Mohammed Elfekky

Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Dr. Mennatallah Hatem Shalaby

Lecturer of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Ass. Prof. Rasha Tarif Hamza

Assistant Professor of Pediatrics Faculty of Medicine - Ain Shams University

Department of Radiodiagnosis
Faculty of Medicine
Ain Shams University
2014

تشوهات الكلى في مرضى متلازمة تيرنر:دور المسح الذري

توطيع للحصول على درجة الماجستير في الاشعة التشخيصية

در اسة مقدمة من الطبيبة دنيا برهان الدين عبدالله بالوريوس طب وجراحة علمة

تحت اشراف

أد سحر محمد الفقي استاذ الاشعة التشخيصية كلية الطب - جامعة عين شمس

د منة الله حاتم شلبي مدرس الاشعة التشخيصية كلية الطب – جامعة عين شمس

امدرشا طريف حمزة استاذ مساعد طب الاطفال كلية الطب-جامعة عين شمس

> قسم الاشعة التشخيصية كلية الطب جامعة عين شمس 2014

List of Contents

ii
iii
iv
1
4
5
47
71
85
89
99
121
127
129
131
I

List of Abbreviations

3D Three-dimensional

ACE Angiotensin converting enzyme

ACR..... American college of radiology

CTU Computed tomography urography

DMSA Dimercaptosuccinic acid

DTPA Diethylene triamine penta-acetic acid

ERPF Effective renal plasma flow

FISH Fluorescence in situ hybridization

GFR Glomerular filtration rate

LEAP/GAP Low-energy all-purpose/general all-purpose

MR Magnetic resonance

OIH Orthoiodohippurate

OM Otitis media

SENSE Sensitivity encoding

SHOX Short-stature homeobox-containing gene

SPAIR q..... Spectral presaturation with inversion recovery

SPECT Single-photonemission computed tomography

SPGR Spoiled gradient echo

SSFS Single-shot fast spin echo

STIR Short-tau inversion recovery

TS Turner syndrome

List of Tables

Table No.	Title Page No.
Table (1):	Karyotypes of patients
Table (2):	Frequency and percentage of karyotype patterns90
Table (3):	Table demonstrates the (age, weight, height and tanner
	breast stage91
Table (4):	U/S results among the patients93
Table (5):	Frequenc and percentage of normal and abnormal results
	of U/S94
Table (6):	Demonstrate the results of scintigraphy Among our
	patients we found following scintigraphy results95
Table (7):	Frequency and percentage of normal and abnormal results
	of scientigraphy97
Table (8):	Frequency and percentage of normal and abnormal
	findings in scintigraphy according to patients Karyotypes97
Table (8):	Normal GFR in children and young adult

List of Figures

Fig. No	D. Title	Page No.
Fig. (1):	Scheme of normal anatomical relations of the kidneys	7
Fig. (2):	Normal intrarenal arterial vessels	10
Fig. (3):	Normal lymph nodes of the Abdomen	13
Fig. (4):	Fundamental planes employed for renal imaging	14
Fig. (5):	Conventional plain radiograph of the abdomen	
Fig. (6):	Plain radiograph	16
Fig. (7):	Renal Ultrasound	17
Fig. (8):	Normal anatomy of the adult kidney at ultrasound	19
Fig.(9):	Normal renal parenchymal vascularization may be effective	ely revealed
	by Doppler	21
Fig. (10):	Intrarenal arteries Doppler	22
	Normal computed tomography (CT)	
	Normal kidney on magnetic resonance (MR)	
Fig. (13):	Normal MR dynamic phases	30
Fig. (14):	Duplication of the renal pelvis (US)	33
Fig. (15):	Hypertrophied column of Bertin	34
	Dromedary or splenic hump	
Fig. (17):	Renal fetal lobations	36
Fig. (18):	Contrast-enhanced CT	38
Fig. (19):	Intravenous excretory urography	40
Fig. (20):	Computed tomography urography (CTU)	41
	Horseshoe kidney	
Fig. (22):	Bar chart shows the percentage of normal and abnormal	l findings in
	scintigraphy according to patients Karyotypes	98
Fig. (23):	Case 1	101
Fig. (24):	Case 2	103
Fig. (25)	: Case 3	105
Fig. (26)	: Case 4	107
Fig. (27)	: Case 5	109
Fig. (28)	: Case 6	111
Fig. (29)	: Case 7	113
Fig. (30)	: Case 8	115
Fig. (31)	: Case 9	117
Fig. (32)	: Case 10	119

NTRODUCTION

Turner syndrome (TS) is diagnosed in females with partial or complete absence of one X chromosome (45, X karyotype). Clinical manifestations vary and may be subtle, but they usually include short stature, a broad chest with widely spaced nipples, cubitus valgus, congenital lymphedema, and a lack of spontaneous pubertal development from ovarian sex hormone insufficiency (*Jones and Smith*, 2006).

Turner syndrome occurs in one out of 2,500 to 3,000 live female births; however, many more 45X conceptuses do not survive past the first trimester. Ninety-nine percent of conceptuses with a 45X karyotype abort spontaneously; Turner syndrome causes 10 percent of all first-trimester miscarriages (*Menasha et al.*, 2005)

Unlike with Down syndrome, maternal age does not increase the risk of Turner syndrome, and there are no clearly established risk factors. Recurrence in subsequent pregnancies is rare (*Gardner and Sutherland*, 2004).

The presentation of Turner syndrome varies throughout a patient's life. The diagnosis should be considered in a female fetus with hydrops, increased nuchal translucency, cystic hygroma, or lymphedema (*Sanders and Blackmon*, 2002).

A diagnosis of Turner syndrome can be confirmed with standard karyotyping (i.e., chromosomal analysis of 30 peripheral lymphocytes). More than one half of patients with the condition will have a missing X chromosome (45, X) in all cells studied or a combination of monosomy X and normal cells (45, X/46, XX; mosaic Turner syndrome) (*Bondy*, 2007).

A mosaic result does not necessarily predict severity because karyotyping only investigates lymphocytes, not the relevant tissues (e.g., brain, heart, ovaries). (*Bondy*, 2007).

Congenital malformations of the urinary system are present in up to 30% of patients with TS. Rotational abnormalities and double collecting systems are found most frequently. Although many of these abnormalities do not have clinical significance, some may result in an increased risk of hypertension, urinary tract infections, or hydronephrosis(*Lippe*, 2009).

Therefore, all individuals with TS should have a renal ultrasound study performed at the timeof diagnosis. If abnormalities are detected, further evaluations should be performed, and the appropriate therapy instituted. Additionally, in such individuals, ultrasound and urine cultures should be performed every 3–5 years (*Lippe*, 2009).

Radionuclide renography refers to serial imaging after intravenous administration of technetium-99m DTPA or technetium-99m MAG3. It is used for qualitative and quantitative

evaluation of differential renal function. A commonly used technique involves dynamic acquisition of 1-2 second images for 1 minute (vascular phase), followed by 15-60 second images for 20 to 30 minutes (functional uptake, cortical transit, and excretion phases). If evaluation of renal perfusion is not needed, the examination is performed without the first phase (*Boubaker et al.*, 2006).

The regions of interest are typically drawn around the whole kidneys, but occasionally are limited to the renal cortex if a considerable amount of collecting system activity is present. A background region of interest is placed adjacent to each kidney(*Boubaker et al*, 2006).

Depending on the regions of interest drawn, the time-activity curves will reflect the functional clearance of the whole kidney, renal cortex, or collecting system. The differential renal function is calculated based on the relative counts accumulated in each kidney during the second minute after injection of the radiopharmaceutical (*Boubaker et al, 2006*).

AIM OF THE WORK

- To assess the frequency of renal anomalies detected by scintigraphy in patients with Turner syndrome.
- To assess the advantages of renal scintigraphy over abdominal ultrasound and its role in early detection of renal affection in patients of Turner syndrome.
- To evaluate split renal function in such patients.

NORMAL RENAL ANATOMY AND RELEVANT RENAL ANOMALIES

A- Outline anatomy

The kidneys are retroperitoneal organs that are located in the perirenal retroperitoneal space with a longitudinal diameter of 10–12 cm and a latero-lateral diameter of 3–5 cm and a weight of 250–270 g. The kidney initially develops opposite to the future S2 vertebra, but eventually comes to rest opposite the L1 or L2 vertebra (*Federle*, 2006).

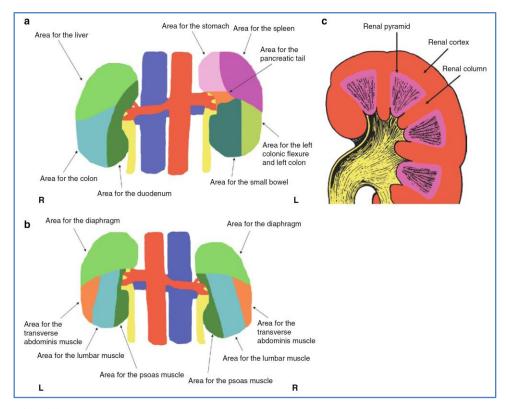
In the supine position, the medial border of the normal kidney is much more anterior than the lateral border, so that the kidneys lie at an angle of about 30° from the horizontal (*Nino-Murcia et al.*, 2000).

The upper pole of each kidney is situated more posteriorly than the lower pole.

Renal anatomical Relations

I- anteriorly

The right kidney,, has a relation with the inferior surface of the liver with peritoneal interposition, and with the second portion of the duodenum without any peritoneal interposition since the second portion of the duodenum is retroperitoneal. (Fig. 1a) (*Quaia et al.*, 2011).


The left kidney has a relation with the pancreatic tail, the spleen, the stomach, the ligament of Treitz and small bowel, and with the left colic flexure and left colon (**Fig. 1a**). Over the left kidney, there are two important peritoneal reflections, one vertical corresponding to the spleno-renal ligament (connected to the gastro-diaphragmatic and gastrosplenic ligaments) and one horizontal corresponding to the transverse mesocolon (*Quaia et al.*, 2011).

II- Posteriorly

Both kidneys present a relationship with the diaphragm, with the lateral margin of the psoas muscle, with the aponeurosis of the transverse abdominis muscle, and with the lumbar muscle (Fig. 1b). (*Quaia et al.*, 2011).

III-Superiorly

Both kidneys have a relation with the adrenal glands, while the right kidney is separated from the inferior surface of the liver by the interposition of a double peritoneal sheet which derives from the reflection of the peritoneum to the inferior limit of the coronary liver ligament that delimitates the hepatorenal space or Morrison pouch (*Quaia et al.*, 2011).

Fig. (1): (a) Scheme of the anterior anatomical relations of the kidneys: R right; L left. (b) Scheme of the posterior anatomical relations of the kidneys: R right; L left. (c) Scheme of the main components of the renal parenchyma (renal cortex, renal columns, and renal medulla divided in multiple renal pyramids) overlied by the renal capsule (black color) (*quoted from Quaia et al.*, 2011).

B- The renal parenchyma

The renal parenchyma is composed of different components. (Fig. 1c).

The renal capsule is a tough fibrous layer surrounding the kidney (fibrous renal capsule) and covered by a thick layer of perinephric adipose tissue (fat renal capsule). The kidney is covered by the renal capsule formed by the fibrous and adipose